Periodic perturbations of central force problems and an application to a restricted 3-body problem

IF 2.1 1区 数学 Q1 MATHEMATICS
Alberto Boscaggin , Walter Dambrosio , Guglielmo Feltrin
{"title":"Periodic perturbations of central force problems and an application to a restricted 3-body problem","authors":"Alberto Boscaggin ,&nbsp;Walter Dambrosio ,&nbsp;Guglielmo Feltrin","doi":"10.1016/j.matpur.2024.04.006","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a perturbation of a central force problem of the form<span><span><span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>¨</mo></mrow></mover><mo>=</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mfrac><mo>+</mo><mi>ε</mi><mspace></mspace><msub><mrow><mi>∇</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>U</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>,</mo></math></span></span></span> where <span><math><mi>ε</mi><mo>∈</mo><mi>R</mi></math></span> is a small parameter, <span><math><mi>V</mi><mo>:</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mi>R</mi></math></span> and <span><math><mi>U</mi><mo>:</mo><mi>R</mi><mo>×</mo><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>)</mo><mo>→</mo><mi>R</mi></math></span> are smooth functions, and <em>U</em> is <em>τ</em>-periodic in the first variable. Based on the introduction of suitable time-maps (the radial period and the apsidal angle) for the unperturbed problem (<span><math><mi>ε</mi><mo>=</mo><mn>0</mn></math></span>) and of an associated non-degeneracy condition, we apply an higher-dimensional version of the Poincaré–Birkhoff fixed point theorem to prove the existence of non-circular <em>τ</em>-periodic solutions bifurcating from invariant tori at <span><math><mi>ε</mi><mo>=</mo><mn>0</mn></math></span>. We then prove that this non-degeneracy condition is satisfied for some concrete examples of physical interest (including the homogeneous potential <span><math><mi>V</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>=</mo><mi>κ</mi><mo>/</mo><msup><mrow><mi>r</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span> for <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mn>2</mn><mo>)</mo><mo>∖</mo><mo>{</mo><mo>−</mo><mn>2</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>). Finally, an application is given to a restricted 3-body problem with a non-Newtonian interaction.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"186 ","pages":"Pages 31-73"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000394/pdfft?md5=a94afa454e50950cfd681c23244b1192&pid=1-s2.0-S0021782424000394-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000394","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a perturbation of a central force problem of the formx¨=V(|x|)x|x|+εxU(t,x),xR2{0}, where εR is a small parameter, V:(0,+)R and U:R×(R2{0})R are smooth functions, and U is τ-periodic in the first variable. Based on the introduction of suitable time-maps (the radial period and the apsidal angle) for the unperturbed problem (ε=0) and of an associated non-degeneracy condition, we apply an higher-dimensional version of the Poincaré–Birkhoff fixed point theorem to prove the existence of non-circular τ-periodic solutions bifurcating from invariant tori at ε=0. We then prove that this non-degeneracy condition is satisfied for some concrete examples of physical interest (including the homogeneous potential V(r)=κ/rα for α(,2){2,0,1}). Finally, an application is given to a restricted 3-body problem with a non-Newtonian interaction.

中心力问题的周期性扰动及其在受限三体问题中的应用
我们考虑形式为x¨=V′(|x|)x|x|+ε∇xU(t,x),x∈R2∖{0}的中心力问题的扰动,其中ε∈R是一个小参数,V:(0,+∞)→R和U:R×(R2∖{0})→R是光滑函数,U是第一变量中的τ周期。基于为无扰动问题(ε=0)引入合适的时间映射(径向周期和梢角)以及相关的非退化条件,我们应用高维版本的 Poincaré-Birkhoff 定点定理证明了从ε=0 处的不变环分岔出的非圆形 τ 周期解的存在性。然后,我们证明在一些具体的物理实例中(包括α∈(-∞,2)∖{-2,0,1}的均相势能 V(r)=κ/rα ),这个非退化条件是满足的。最后,还给出了非牛顿相互作用的受限三体问题的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信