Alberto Boscaggin , Walter Dambrosio , Guglielmo Feltrin
{"title":"Periodic perturbations of central force problems and an application to a restricted 3-body problem","authors":"Alberto Boscaggin , Walter Dambrosio , Guglielmo Feltrin","doi":"10.1016/j.matpur.2024.04.006","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a perturbation of a central force problem of the form<span><span><span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>¨</mo></mrow></mover><mo>=</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mfrac><mo>+</mo><mi>ε</mi><mspace></mspace><msub><mrow><mi>∇</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>U</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>,</mo></math></span></span></span> where <span><math><mi>ε</mi><mo>∈</mo><mi>R</mi></math></span> is a small parameter, <span><math><mi>V</mi><mo>:</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mi>R</mi></math></span> and <span><math><mi>U</mi><mo>:</mo><mi>R</mi><mo>×</mo><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>)</mo><mo>→</mo><mi>R</mi></math></span> are smooth functions, and <em>U</em> is <em>τ</em>-periodic in the first variable. Based on the introduction of suitable time-maps (the radial period and the apsidal angle) for the unperturbed problem (<span><math><mi>ε</mi><mo>=</mo><mn>0</mn></math></span>) and of an associated non-degeneracy condition, we apply an higher-dimensional version of the Poincaré–Birkhoff fixed point theorem to prove the existence of non-circular <em>τ</em>-periodic solutions bifurcating from invariant tori at <span><math><mi>ε</mi><mo>=</mo><mn>0</mn></math></span>. We then prove that this non-degeneracy condition is satisfied for some concrete examples of physical interest (including the homogeneous potential <span><math><mi>V</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>=</mo><mi>κ</mi><mo>/</mo><msup><mrow><mi>r</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span> for <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mn>2</mn><mo>)</mo><mo>∖</mo><mo>{</mo><mo>−</mo><mn>2</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>). Finally, an application is given to a restricted 3-body problem with a non-Newtonian interaction.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"186 ","pages":"Pages 31-73"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000394/pdfft?md5=a94afa454e50950cfd681c23244b1192&pid=1-s2.0-S0021782424000394-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000394","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a perturbation of a central force problem of the form where is a small parameter, and are smooth functions, and U is τ-periodic in the first variable. Based on the introduction of suitable time-maps (the radial period and the apsidal angle) for the unperturbed problem () and of an associated non-degeneracy condition, we apply an higher-dimensional version of the Poincaré–Birkhoff fixed point theorem to prove the existence of non-circular τ-periodic solutions bifurcating from invariant tori at . We then prove that this non-degeneracy condition is satisfied for some concrete examples of physical interest (including the homogeneous potential for ). Finally, an application is given to a restricted 3-body problem with a non-Newtonian interaction.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.