Theorems on Direct and Inverse Approximation by Algebraic Polynomials and Piecewise Polynomials in the Spaces $${{H}^{m}}(a,b)$$ and $$B_{{2,q}}^{s}(a,b)$$

IF 0.5 Q3 MATHEMATICS
R. Z. Dautov
{"title":"Theorems on Direct and Inverse Approximation by Algebraic Polynomials and Piecewise Polynomials in the Spaces $${{H}^{m}}(a,b)$$ and $$B_{{2,q}}^{s}(a,b)$$","authors":"R. Z. Dautov","doi":"10.3103/s1066369x24700026","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The best estimates for the approximation error of functions, defined on a finite interval, by algebraic polynomials and piecewise polynomial functions are obtained in the case when the errors are measured in the norms of Sobolev and Besov spaces. We indicate the weighted Besov spaces, whose functions satisfy Jackson-type and Bernstein-type inequalities and, as a consequence, direct and inverse approximation theorems. In a number of cases, exact constants are indicated in the estimates.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"59 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The best estimates for the approximation error of functions, defined on a finite interval, by algebraic polynomials and piecewise polynomial functions are obtained in the case when the errors are measured in the norms of Sobolev and Besov spaces. We indicate the weighted Besov spaces, whose functions satisfy Jackson-type and Bernstein-type inequalities and, as a consequence, direct and inverse approximation theorems. In a number of cases, exact constants are indicated in the estimates.

关于在空间 $${{H}^{m}}(a,b)$$ 和 $$B_{2,q}}^{s}(a,b)$$ 中用代数多项式和分段多项式直接逼近和反逼近的定理
摘要 用代数多项式和片断多项式函数定义在有限区间上的函数的近似误差的最佳估计值,是在误差以 Sobolev 和 Besov 空间的规范测量的情况下获得的。我们指出了加权贝索夫空间,其函数满足杰克逊型和伯恩斯坦型不等式,并因此得到了直接和反向逼近定理。在一些情况下,估计值中会指出精确常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信