An Estimate for the Sum of a Dirichlet Series on an Arc of Bounded Slope

IF 0.5 Q3 MATHEMATICS
T. I. Belous, A. M. Gaisin, R. A. Gaisin
{"title":"An Estimate for the Sum of a Dirichlet Series on an Arc of Bounded Slope","authors":"T. I. Belous, A. M. Gaisin, R. A. Gaisin","doi":"10.3103/s1066369x24700014","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The article considers the behavior of the sum of the Dirichlet series <span>\\(F(s) = \\sum\\limits_n {\\kern 1pt} {{a}_{n}}{{e}^{{{{\\lambda }_{n}}s}}},\\)</span> <span>\\(0 &lt; {{\\lambda }_{n}} \\uparrow \\infty ,\\)</span> which converges absolutely in the left half-plane <span>\\({{\\Pi }_{0}}\\)</span>, on a curve arbitrarily approaching the imaginary axis—the boundary of this half-plane. We have obtained a solution to the following problem: under what additional conditions on <span>\\(\\gamma \\)</span> will the strengthened asymptotic relation the type of Pólya for the sum <i>F</i>(<i>s</i>) of the Dirichlet series be valid in the case when the argument <span>\\(s\\)</span> tends to the imaginary axis along <span>\\(\\gamma \\)</span> over a sufficiently massive set.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"22 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The article considers the behavior of the sum of the Dirichlet series \(F(s) = \sum\limits_n {\kern 1pt} {{a}_{n}}{{e}^{{{{\lambda }_{n}}s}}},\) \(0 < {{\lambda }_{n}} \uparrow \infty ,\) which converges absolutely in the left half-plane \({{\Pi }_{0}}\), on a curve arbitrarily approaching the imaginary axis—the boundary of this half-plane. We have obtained a solution to the following problem: under what additional conditions on \(\gamma \) will the strengthened asymptotic relation the type of Pólya for the sum F(s) of the Dirichlet series be valid in the case when the argument \(s\) tends to the imaginary axis along \(\gamma \) over a sufficiently massive set.

有界斜率弧线上狄利克特数列之和的估计值
Abstract The article considers the behavior of the sum of the Dirichlet series \(F(s) = \sum\limits_n {\kern 1pt} {{a}_{n}}{{e}^{{{{\lambda }_{n}}s}},\)\(0 < {{\lambda }_{n}} \uparrow \infty ,\) 在左半平面 \({{\Pi }_{0}}\)上绝对收敛于任意接近虚轴的曲线--这个半平面的边界。我们得到了下面问题的一个解:当参数\(s\)在一个足够大的集合上沿着\(\gamma \)趋向于虚轴时,在\(\gamma \)上的加强渐近关系波利亚类型对于迪里希勒数列的和F(s)是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信