Genomic prediction and QTL analysis for grain Zn content and yield in Aus-derived rice populations

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tapas Kumer Hore, C. H. Balachiranjeevi, Mary Ann Inabangan-Asilo, C. A. Deepak, Alvin D. Palanog, Jose E. Hernandez, Glenn B. Gregorio, Teresita U. Dalisay, Maria Genaleen Q. Diaz, Roberto Fritsche Neto, Md. Abdul Kader, Partha Sarathi Biswas, B. P. Mallikarjuna Swamy
{"title":"Genomic prediction and QTL analysis for grain Zn content and yield in Aus-derived rice populations","authors":"Tapas Kumer Hore, C. H. Balachiranjeevi, Mary Ann Inabangan-Asilo, C. A. Deepak, Alvin D. Palanog, Jose E. Hernandez, Glenn B. Gregorio, Teresita U. Dalisay, Maria Genaleen Q. Diaz, Roberto Fritsche Neto, Md. Abdul Kader, Partha Sarathi Biswas, B. P. Mallikarjuna Swamy","doi":"10.1007/s13562-024-00886-0","DOIUrl":null,"url":null,"abstract":"<p>Zinc (Zn) biofortification of rice can address Zn malnutrition in Asia. Identification and introgression of QTLs for grain Zn content and yield (YLD) can improve the efficiency of rice Zn biofortification. In four rice populations we detected 56 QTLs for seven traits by inclusive composite interval mapping (ICIM), and 16 QTLs for two traits (YLD and Zn) by association mapping. The phenotypic variance (PV) varied from 4.5% (<i>qPN</i><sub><i>4.1</i></sub>) to 31.7% (<i>qPH</i><sub><i>1.1</i></sub>). <i>qDF</i><sub><i>1.1</i></sub>, <i>qDF</i><sub><i>7.2</i></sub>, <i>qDF</i><sub><i>8.1</i></sub>, <i>qPH</i><sub><i>1.1</i></sub>, <i>qPH</i><sub><i>7.1</i></sub>, <i>qPL</i><sub><i>1.2</i></sub>, <i>qPL</i><sub><i>9.1,</i></sub><i> qZn</i><sub><i>5.1</i></sub>, <i>qZn</i><sub><i>5.2</i></sub>, <i>qZn</i><sub><i>6.1</i></sub> and <i>qZn</i><sub><i>7.1</i></sub> were identified in both dry and wet seasons; <i>qZn</i><sub><i>5.1</i></sub><i>, qZn</i><sub><i>5.2</i></sub>, <i>qZn</i><sub><i>5.3,</i></sub><i> qZn</i><sub><i>6.2,</i></sub><i> qZn</i><sub><i>7.1</i></sub> and <i>qYLD</i><sub><i>1.2</i></sub> were detected by both ICIM and association mapping. <i>qZn</i><sub><i>7.1</i></sub> had the highest PV (17.8%) and additive effect (2.5 ppm). Epistasis and QTL co-locations were also observed for different traits. The multi-trait genomic prediction values were 0.24 and 0.16 for YLD and Zn respectively. <i>qZn</i><sub><i>6.2</i></sub> was co-located with a gene (<i>OsHMA2</i>) involved in Zn transport. These results are useful for Zn biofortificatiton of rice.</p>","PeriodicalId":16835,"journal":{"name":"Journal of Plant Biochemistry and Biotechnology","volume":"37 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Biochemistry and Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00886-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc (Zn) biofortification of rice can address Zn malnutrition in Asia. Identification and introgression of QTLs for grain Zn content and yield (YLD) can improve the efficiency of rice Zn biofortification. In four rice populations we detected 56 QTLs for seven traits by inclusive composite interval mapping (ICIM), and 16 QTLs for two traits (YLD and Zn) by association mapping. The phenotypic variance (PV) varied from 4.5% (qPN4.1) to 31.7% (qPH1.1). qDF1.1, qDF7.2, qDF8.1, qPH1.1, qPH7.1, qPL1.2, qPL9.1, qZn5.1, qZn5.2, qZn6.1 and qZn7.1 were identified in both dry and wet seasons; qZn5.1, qZn5.2, qZn5.3, qZn6.2, qZn7.1 and qYLD1.2 were detected by both ICIM and association mapping. qZn7.1 had the highest PV (17.8%) and additive effect (2.5 ppm). Epistasis and QTL co-locations were also observed for different traits. The multi-trait genomic prediction values were 0.24 and 0.16 for YLD and Zn respectively. qZn6.2 was co-located with a gene (OsHMA2) involved in Zn transport. These results are useful for Zn biofortificatiton of rice.

Abstract Image

澳大利亚水稻群体谷物锌含量和产量的基因组预测和 QTL 分析
对水稻进行锌(Zn)生物强化可解决亚洲的锌营养不良问题。谷物锌含量和产量(YLD)QTLs的鉴定和导入可提高水稻锌生物强化的效率。在四个水稻群体中,我们通过包容性复合间隔图谱(ICIM)检测到七个性状的 56 个 QTLs,通过关联图谱检测到两个性状(YLD 和 Zn)的 16 个 QTLs。qDF1.1、qDF7.2、qDF8.1、qPH1.1、qPH7.1、qPL1.2、qPL9.1、qZn5.1、qZn5.2、qZn6.1和qZn7.1的表型方差(PV)从4.5%(qPN4.1)到31.7%(qPH1.1)不等。qZn7.1 的 PV 值(17.8%)和加性效应(2.5 ppm)最高。还观察到不同性状的外显性和 QTL 共定位。qZn6.2与一个参与锌转运的基因(OsHMA2)共位。这些结果对水稻的锌生物强化很有帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plant Biochemistry and Biotechnology
Journal of Plant Biochemistry and Biotechnology 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
59
审稿时长
>12 weeks
期刊介绍: The Journal publishes review articles, research papers, short communications and commentaries in the areas of plant biochemistry, plant molecular biology, microbial and molecular genetics, DNA finger printing, micropropagation, and plant biotechnology including plant genetic engineering, new molecular tools and techniques, genomics & bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信