Matteo Santelia, Francesco Mazzeo, Riccardo Rosi, Egidio Di Gialleonardo, Stefano Melzi, Stefano Bruni
{"title":"Numerical simulation of the post-derailment behaviour of a railway vehicle and its interaction with the infrastructure","authors":"Matteo Santelia, Francesco Mazzeo, Riccardo Rosi, Egidio Di Gialleonardo, Stefano Melzi, Stefano Bruni","doi":"10.1007/s11044-024-09990-4","DOIUrl":null,"url":null,"abstract":"<p>Train derailments may have catastrophic consequences, and therefore suitable measures should be designed and installed at specific safety-relevant sites to mitigate their effects. Mitigation measures, such as guard rails and containment walls, aim at restraining the motion of the derailed vehicle using suitable derailment containment devices. However, the design and structural sizing of these devices is challenging as the quantification of the loads caused by the impact with the vehicle is complex.</p><p>The aim of this paper is to extend previous work from the same authors aimed at defining a non-linear multi-body model for the simulation in time-domain of the post-derailment behaviour of a railway vehicle and the impact on a derailment containment wall. The extension presented in this paper is concerned with the model of the interaction of the derailed vehicle with the sleepers and with the ballast. To this aim, an algorithm is introduced to manage the different possible contact conditions the wheels of the vehicle may undergo during the derailment process: contact with the rail, with the sleepers and with the ballast. Then, a model of the impact between the derailed wheels and the sleepers is introduced, and a terramechanic model defining the forces acting on the wheels sinking in the ballast is established. The effect of the accurate modelling of forces exchanged by the derailed wheels with the sleepers and the ballast is quantified for a relevant derailment scenario and shown to be highly relevant to the estimation of the impact loads applied to the containment structure.</p>","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multibody System Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11044-024-09990-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Train derailments may have catastrophic consequences, and therefore suitable measures should be designed and installed at specific safety-relevant sites to mitigate their effects. Mitigation measures, such as guard rails and containment walls, aim at restraining the motion of the derailed vehicle using suitable derailment containment devices. However, the design and structural sizing of these devices is challenging as the quantification of the loads caused by the impact with the vehicle is complex.
The aim of this paper is to extend previous work from the same authors aimed at defining a non-linear multi-body model for the simulation in time-domain of the post-derailment behaviour of a railway vehicle and the impact on a derailment containment wall. The extension presented in this paper is concerned with the model of the interaction of the derailed vehicle with the sleepers and with the ballast. To this aim, an algorithm is introduced to manage the different possible contact conditions the wheels of the vehicle may undergo during the derailment process: contact with the rail, with the sleepers and with the ballast. Then, a model of the impact between the derailed wheels and the sleepers is introduced, and a terramechanic model defining the forces acting on the wheels sinking in the ballast is established. The effect of the accurate modelling of forces exchanged by the derailed wheels with the sleepers and the ballast is quantified for a relevant derailment scenario and shown to be highly relevant to the estimation of the impact loads applied to the containment structure.
期刊介绍:
The journal Multibody System Dynamics treats theoretical and computational methods in rigid and flexible multibody systems, their application, and the experimental procedures used to validate the theoretical foundations.
The research reported addresses computational and experimental aspects and their application to classical and emerging fields in science and technology. Both development and application aspects of multibody dynamics are relevant, in particular in the fields of control, optimization, real-time simulation, parallel computation, workspace and path planning, reliability, and durability. The journal also publishes articles covering application fields such as vehicle dynamics, aerospace technology, robotics and mechatronics, machine dynamics, crashworthiness, biomechanics, artificial intelligence, and system identification if they involve or contribute to the field of Multibody System Dynamics.