Bright, dark, and periodic soliton solutions for the (2+1)-dimensional nonlinear Schrödinger equation with fourth-order nonlinearity and dispersion

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Khalid K. Ali, Mohamed S. Mohamed, M. S. Mehanna
{"title":"Bright, dark, and periodic soliton solutions for the (2+1)-dimensional nonlinear Schrödinger equation with fourth-order nonlinearity and dispersion","authors":"Khalid K. Ali,&nbsp;Mohamed S. Mohamed,&nbsp;M. S. Mehanna","doi":"10.1007/s11082-024-06830-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a novel model proposed by Wazwaz et al. in 2023, in the nonlinear optics literature. This contributes to advancing optical devices and technologies, particularly in telecommunications and laser systems. The characteristics of bright, dark, and periodic soliton solutions for the (2+1)-dimensional nonlinear Schrödinger equation with fourth-order nonlinearity and dispersion are explored in this paper. The relevance of these solutions lies in the study of nonlinear waves propagating in an inhomogeneous optical fiber. The soliton solutions are obtained through the implementation of three analytical methods: the Kudryashov method, the Bernoulli Sub-ODE method, and the Extended Direct Algebraic method. The bright, dark, and periodic soliton solutions are constructed by utilizing bilinear forms. Furthermore, the impact of variable coefficients on the structures of these solitons is analyzed. Graphical illustrations depict the propagation of bright, dark, and periodic solitons.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 6","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-024-06830-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel model proposed by Wazwaz et al. in 2023, in the nonlinear optics literature. This contributes to advancing optical devices and technologies, particularly in telecommunications and laser systems. The characteristics of bright, dark, and periodic soliton solutions for the (2+1)-dimensional nonlinear Schrödinger equation with fourth-order nonlinearity and dispersion are explored in this paper. The relevance of these solutions lies in the study of nonlinear waves propagating in an inhomogeneous optical fiber. The soliton solutions are obtained through the implementation of three analytical methods: the Kudryashov method, the Bernoulli Sub-ODE method, and the Extended Direct Algebraic method. The bright, dark, and periodic soliton solutions are constructed by utilizing bilinear forms. Furthermore, the impact of variable coefficients on the structures of these solitons is analyzed. Graphical illustrations depict the propagation of bright, dark, and periodic solitons.

Abstract Image

具有四阶非线性和弥散性的(2+1)维非线性薛定谔方程的亮、暗和周期孤子解
本文介绍了瓦兹瓦兹等人于 2023 年在非线性光学文献中提出的一个新模型。这有助于推动光学设备和技术的发展,尤其是在电信和激光系统方面。本文探讨了具有四阶非线性和色散的 (2+1)-dimensional 非线性薛定谔方程的亮、暗和周期性孤子解的特征。这些解与非线性波在不均匀光纤中传播的研究相关。孤子解是通过三种分析方法获得的:库德里亚绍夫法、伯努利子 ODE 法和扩展直接代数法。利用双线性形式构建了亮孤子、暗孤子和周期孤子解。此外,还分析了可变系数对这些孤子结构的影响。图解描述了亮孤子、暗孤子和周期孤子的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信