Immunohistochemical Study of Human Mitochondrial Ferritin in the Substantia Nigra Following Subarachnoid Hemorrhage

IF 1.6 4区 生物学 Q4 CELL BIOLOGY
Shogo Takahata, Tomoko Kato, Daijiro Yanagisawa, Haruka Tsubaki, Zulzikry Hafiz Abu Bakar, Ken-ichi Mukaisho, Yasushi Itoh, Ikuo Tooyama
{"title":"Immunohistochemical Study of Human Mitochondrial Ferritin in the Substantia Nigra Following Subarachnoid Hemorrhage","authors":"Shogo Takahata, Tomoko Kato, Daijiro Yanagisawa, Haruka Tsubaki, Zulzikry Hafiz Abu Bakar, Ken-ichi Mukaisho, Yasushi Itoh, Ikuo Tooyama","doi":"10.1267/ahc.24-00002","DOIUrl":null,"url":null,"abstract":"</p><p>Mitochondrial ferritin (FtMt) is a novel ferritin that sequesters iron and plays a protective role against oxidative stress. FtMt shares a high homology with H-ferritin but is expressed only in the brain, heart, and testis. In the midbrain, FtMt expression is observed in the substantia nigra. FtMt plays a neuroprotective role in the pathology of neurodegenerative diseases such as Parkinson’s disease, where excessive iron induces oxidative stress, causing cell death. Herein, we investigated FtMt immunoreactivity in the brains of patients with subarachnoid hemorrhage (SAH). Double immunofluorescence labeling of tyrosine hydroxylase (TH) and FtMt showed high colocalization in the substantia nigra pars compacta (SNc) in control and SAH cases. However, in SAH cases, FtMt immunoreactivity was observed in some TH-negative neurons. Double immunofluorescence labeling of glial cell markers and FtMt showed no apparent colocalization. The number and ratio of FtMt-positive but TH-negative neurons significantly differed between the control and SAH groups. Prussian blue staining in SAH cases showed positive iron staining over a wide surface range and the substantia nigra. Thus, FtMt may be related to iron dynamics in the substantia nigra following subarachnoid hemorrhage.</p>\n<p></p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Histochemica Et Cytochemica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1267/ahc.24-00002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial ferritin (FtMt) is a novel ferritin that sequesters iron and plays a protective role against oxidative stress. FtMt shares a high homology with H-ferritin but is expressed only in the brain, heart, and testis. In the midbrain, FtMt expression is observed in the substantia nigra. FtMt plays a neuroprotective role in the pathology of neurodegenerative diseases such as Parkinson’s disease, where excessive iron induces oxidative stress, causing cell death. Herein, we investigated FtMt immunoreactivity in the brains of patients with subarachnoid hemorrhage (SAH). Double immunofluorescence labeling of tyrosine hydroxylase (TH) and FtMt showed high colocalization in the substantia nigra pars compacta (SNc) in control and SAH cases. However, in SAH cases, FtMt immunoreactivity was observed in some TH-negative neurons. Double immunofluorescence labeling of glial cell markers and FtMt showed no apparent colocalization. The number and ratio of FtMt-positive but TH-negative neurons significantly differed between the control and SAH groups. Prussian blue staining in SAH cases showed positive iron staining over a wide surface range and the substantia nigra. Thus, FtMt may be related to iron dynamics in the substantia nigra following subarachnoid hemorrhage.

蛛网膜下腔出血后黑质下人体线粒体铁蛋白的免疫组化研究
线粒体铁蛋白(FtMt)是一种新型铁蛋白,它能螯合铁,对氧化应激起保护作用。FtMt 与 H-铁蛋白同源性很高,但只在大脑、心脏和睾丸中表达。在中脑,黑质中有 FtMt 的表达。在帕金森病等神经退行性疾病的病理过程中,过量的铁会诱发氧化应激,导致细胞死亡,而 FtMt 在这些疾病的病理过程中发挥着神经保护作用。在此,我们研究了蛛网膜下腔出血(SAH)患者大脑中的 FtMt 免疫反应。酪氨酸羟化酶(TH)和FtMt的双重免疫荧光标记显示,在对照组和SAH病例中,黑质紧实旁(SNc)高度共聚焦。然而,在 SAH 病例中,在一些 TH 阴性的神经元中观察到了 FtMt 免疫反应。神经胶质细胞标记物和 FtMt 的双重免疫荧光标记未显示明显的共聚焦。对照组和 SAH 组 FtMt 阳性但 TH 阴性神经元的数量和比例存在显著差异。SAH病例的普鲁士蓝染色显示,在广泛的表面范围和黑质中,铁染色呈阳性。因此,FtMt可能与蛛网膜下腔出血后黑质中铁的动态变化有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Histochemica Et Cytochemica
Acta Histochemica Et Cytochemica 生物-细胞生物学
CiteScore
3.50
自引率
8.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: Acta Histochemica et Cytochemica is the official online journal of the Japan Society of Histochemistry and Cytochemistry. It is intended primarily for rapid publication of concise, original articles in the fields of histochemistry and cytochemistry. Manuscripts oriented towards methodological subjects that contain significant technical advances in these fields are also welcome. Manuscripts in English are accepted from investigators in any country, whether or not they are members of the Japan Society of Histochemistry and Cytochemistry. Manuscripts should be original work that has not been previously published and is not being considered for publication elsewhere, with the exception of abstracts. Manuscripts with essentially the same content as a paper that has been published or accepted, or is under consideration for publication, will not be considered. All submitted papers will be peer-reviewed by at least two referees selected by an appropriate Associate Editor. Acceptance is based on scientific significance, originality, and clarity. When required, a revised manuscript should be submitted within 3 months, otherwise it will be considered to be a new submission. The Editor-in-Chief will make all final decisions regarding acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信