Gabriel Garayalde, Matteo Torzoni, Matteo Bruggi, Alberto Corigliano
{"title":"Real-time topology optimization via learnable mappings","authors":"Gabriel Garayalde, Matteo Torzoni, Matteo Bruggi, Alberto Corigliano","doi":"10.1002/nme.7502","DOIUrl":null,"url":null,"abstract":"<p>In traditional topology optimization, the computing time required to iteratively update the material distribution within a design domain strongly depends on the complexity or size of the problem, limiting its application in real engineering contexts. This work proposes a multi-stage machine learning strategy that aims to predict an optimal topology and the related stress fields of interest, either in 2D or 3D, without resorting to any iterative analysis and design process. The overall topology optimization is treated as regression task in a low-dimensional latent space, that encodes the variability of the target designs. First, a fully-connected model is employed to surrogate the functional link between the parametric input space characterizing the design problem and the latent space representation of the corresponding optimal topology. The decoder branch of an autoencoder is then exploited to reconstruct the desired optimal topology from its latent representation. The deep learning models are trained on a dataset generated through a standard method of topology optimization implementing the solid isotropic material with penalization, for varying boundary and loading conditions. The underlying hypothesis behind the proposed strategy is that optimal topologies share enough common patterns to be compressed into small latent space representations without significant information loss. Results relevant to a 2D Messerschmitt-Bölkow-Blohm beam and a 3D bridge case demonstrate the capabilities of the proposed framework to provide accurate optimal topology predictions in a fraction of a second.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7502","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In traditional topology optimization, the computing time required to iteratively update the material distribution within a design domain strongly depends on the complexity or size of the problem, limiting its application in real engineering contexts. This work proposes a multi-stage machine learning strategy that aims to predict an optimal topology and the related stress fields of interest, either in 2D or 3D, without resorting to any iterative analysis and design process. The overall topology optimization is treated as regression task in a low-dimensional latent space, that encodes the variability of the target designs. First, a fully-connected model is employed to surrogate the functional link between the parametric input space characterizing the design problem and the latent space representation of the corresponding optimal topology. The decoder branch of an autoencoder is then exploited to reconstruct the desired optimal topology from its latent representation. The deep learning models are trained on a dataset generated through a standard method of topology optimization implementing the solid isotropic material with penalization, for varying boundary and loading conditions. The underlying hypothesis behind the proposed strategy is that optimal topologies share enough common patterns to be compressed into small latent space representations without significant information loss. Results relevant to a 2D Messerschmitt-Bölkow-Blohm beam and a 3D bridge case demonstrate the capabilities of the proposed framework to provide accurate optimal topology predictions in a fraction of a second.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.