{"title":"Efficient global sensitivity analysis method for dynamic models in high dimensions","authors":"Luyi Li, Iason Papaioannou, Daniel Straub","doi":"10.1002/nme.7494","DOIUrl":null,"url":null,"abstract":"<p>Dynamic models generating time-dependent model predictions are typically associated with high-dimensional input spaces and high-dimensional output spaces, in particular if time is discretized. It is computationally prohibitive to apply traditional global sensitivity analysis (SA) separately on each time output, as is common in the literature on multivariate SA. As an alternative, we propose a novel method for efficient global SA of dynamic models with high-dimensional inputs by combining a new polynomial chaos expansion (PCE)-driven partial least squares (PLS) algorithm with the analysis of variance. PLS is used to simultaneously reduce the dimensionality of the input and output variables spaces, by identifying the input and output latent variables that account for most of their joint variability. PCE is incorporated into the PLS algorithm to capture the non-linear behavior of the physical system. We derive the sensitivity indices associated with each output latent variable, based on which we propose generalized sensitivity indices that synthesize the influence of each input on the variance of entire output time series. All sensitivities can be computed analytically by post-processing the coefficients of the PLS-PCE representation. Hence, the computational cost of global SA for dynamic models essentially reduces to the cost for estimating these coefficients. We numerically compare the proposed method with existing methods by several dynamic models with high-dimensional inputs. The results show that the PLS-PCE method can obtain accurate sensitivity indices at low computational cost, even for models with strong interaction among the inputs.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"125 15","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7494","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic models generating time-dependent model predictions are typically associated with high-dimensional input spaces and high-dimensional output spaces, in particular if time is discretized. It is computationally prohibitive to apply traditional global sensitivity analysis (SA) separately on each time output, as is common in the literature on multivariate SA. As an alternative, we propose a novel method for efficient global SA of dynamic models with high-dimensional inputs by combining a new polynomial chaos expansion (PCE)-driven partial least squares (PLS) algorithm with the analysis of variance. PLS is used to simultaneously reduce the dimensionality of the input and output variables spaces, by identifying the input and output latent variables that account for most of their joint variability. PCE is incorporated into the PLS algorithm to capture the non-linear behavior of the physical system. We derive the sensitivity indices associated with each output latent variable, based on which we propose generalized sensitivity indices that synthesize the influence of each input on the variance of entire output time series. All sensitivities can be computed analytically by post-processing the coefficients of the PLS-PCE representation. Hence, the computational cost of global SA for dynamic models essentially reduces to the cost for estimating these coefficients. We numerically compare the proposed method with existing methods by several dynamic models with high-dimensional inputs. The results show that the PLS-PCE method can obtain accurate sensitivity indices at low computational cost, even for models with strong interaction among the inputs.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.