Dispersion Law for a One-Dimensional Weakly Interacting Bose Gas with Zero Boundary Conditions

IF 1.1 3区 物理与天体物理 Q4 PHYSICS, APPLIED
Maksim Tomchenko
{"title":"Dispersion Law for a One-Dimensional Weakly Interacting Bose Gas with Zero Boundary Conditions","authors":"Maksim Tomchenko","doi":"10.1007/s10909-024-03136-8","DOIUrl":null,"url":null,"abstract":"<div><p>From the time-dependent Gross equation, we find the quasiparticle dispersion law for a one-dimensional weakly interacting Bose gas with a non-point interatomic potential and zero boundary conditions (BCs). The result coincides with the dispersion law for periodic BCs, i.e., the Bogoliubov law <span>\\(E_{B}(k) = \\sqrt{\\left( \\frac{\\hbar ^{2} k^2}{2\\,m}\\right) ^{2} + n_{0}\\nu (k)\\frac{\\hbar ^2 k^2}{m}}\\)</span>. In the case of periodic BCs, the dispersion law can be easily derived from Gross’ equation. However, for zero BCs, the analysis is not so simple.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03136-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

From the time-dependent Gross equation, we find the quasiparticle dispersion law for a one-dimensional weakly interacting Bose gas with a non-point interatomic potential and zero boundary conditions (BCs). The result coincides with the dispersion law for periodic BCs, i.e., the Bogoliubov law \(E_{B}(k) = \sqrt{\left( \frac{\hbar ^{2} k^2}{2\,m}\right) ^{2} + n_{0}\nu (k)\frac{\hbar ^2 k^2}{m}}\). In the case of periodic BCs, the dispersion law can be easily derived from Gross’ equation. However, for zero BCs, the analysis is not so simple.

Abstract Image

具有零边界条件的一维弱相互作用玻色气体的弥散定律
根据与时间相关的格罗斯方程,我们找到了具有非点原子间势能和零边界条件(BCs)的一维弱相互作用玻色气体的准粒子色散定律。其结果与周期性 BCs 的色散定律相吻合,即 Bogoliubov 定律 (E_{B}(k) = \sqrt{left( \frac\{hbar ^{2} k^2}{2\,m}\right) ^{2}+ n_{0}\nu (k)\frac\hbar ^2 k^2}{m}}\).在周期性 BCs 的情况下,分散定律可以很容易地从格罗斯方程中推导出来。然而,对于零 BCs,分析就不那么简单了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Low Temperature Physics
Journal of Low Temperature Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
25.00%
发文量
245
审稿时长
1 months
期刊介绍: The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信