{"title":"Detection of Non-Sustained Supraventricular Tachycardia in Atrial Fibrillation Screening","authors":"Hesam Halvaei;Tove Hygrell;Emma Svennberg;Valentina D.A. Corino;Leif Sörnmo;Martin Stridh","doi":"10.1109/JTEHM.2024.3397739","DOIUrl":null,"url":null,"abstract":"Objective: Non-sustained supraventricular tachycardia (nsSVT) is associated with a higher risk of developing atrial fibrillation (AF), and, therefore, detection of nsSVT can improve AF screening efficiency. However, the detection is challenged by the lower signal quality of ECGs recorded using handheld devices and the presence of ectopic beats which may mimic the rhythm characteristics of nsSVT.Methods: The present study introduces a new nsSVT detector for use in single-lead, 30-s ECGs, based on the assumption that beats in an nsSVT episode exhibits similar morphology, implying that episodes with beats of deviating morphology, either due to ectopic beats or noise/artifacts, are excluded. A support vector machine is used to classify successive 5-beat sequences in a sliding window with respect to similar morphology. Due to the lack of adequate training data, the classifier is trained using simulated ECGs with varying signal-to-noise ratio. In a subsequent step, a set of rhythm criteria is applied to similar beat sequences to ensure that episode duration and heart rate is acceptable.Results: The performance of the proposed detector is evaluated using the StrokeStop II database, resulting in sensitivity, specificity, and positive predictive value of 84.6%, 99.4%, and 18.5%, respectively. Conclusion: The results show that a significant reduction in expert review burden (factor of 6) can be achieved using the proposed detector.Clinical and Translational Impact: The reduction in the expert review burden shows that nsSVT detection in AF screening can be made considerably more efficiently.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"480-487"},"PeriodicalIF":3.7000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10521724","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10521724/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Non-sustained supraventricular tachycardia (nsSVT) is associated with a higher risk of developing atrial fibrillation (AF), and, therefore, detection of nsSVT can improve AF screening efficiency. However, the detection is challenged by the lower signal quality of ECGs recorded using handheld devices and the presence of ectopic beats which may mimic the rhythm characteristics of nsSVT.Methods: The present study introduces a new nsSVT detector for use in single-lead, 30-s ECGs, based on the assumption that beats in an nsSVT episode exhibits similar morphology, implying that episodes with beats of deviating morphology, either due to ectopic beats or noise/artifacts, are excluded. A support vector machine is used to classify successive 5-beat sequences in a sliding window with respect to similar morphology. Due to the lack of adequate training data, the classifier is trained using simulated ECGs with varying signal-to-noise ratio. In a subsequent step, a set of rhythm criteria is applied to similar beat sequences to ensure that episode duration and heart rate is acceptable.Results: The performance of the proposed detector is evaluated using the StrokeStop II database, resulting in sensitivity, specificity, and positive predictive value of 84.6%, 99.4%, and 18.5%, respectively. Conclusion: The results show that a significant reduction in expert review burden (factor of 6) can be achieved using the proposed detector.Clinical and Translational Impact: The reduction in the expert review burden shows that nsSVT detection in AF screening can be made considerably more efficiently.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.