Zongbao Li, Yifan Zhong, Yan Lv, Jianzhong Zheng, Yu Hu, Yanyan Yang, Yunxi Li, Meng Sun, Siqian Liu, Yan Guo, Mengchao Zhang, Le Zhou
{"title":"A CT based radiomics analysis to predict the CN0 status of thyroid papillary carcinoma: a two- center study","authors":"Zongbao Li, Yifan Zhong, Yan Lv, Jianzhong Zheng, Yu Hu, Yanyan Yang, Yunxi Li, Meng Sun, Siqian Liu, Yan Guo, Mengchao Zhang, Le Zhou","doi":"10.1186/s40644-024-00690-y","DOIUrl":null,"url":null,"abstract":"To develop and validate radiomics model based on computed tomography (CT) for preoperative prediction of CN0 status in patients with papillary thyroid carcinoma (PTC). A total of 548 pathologically confirmed LNs (243 non-metastatic and 305 metastatic) two distinct hospitals were retrospectively assessed. A total of 396 radiomics features were extracted from arterial-phase CT images, where the strongest features containing the most predictive potential were further selected using the least absolute shrinkage and selection operator (LASSO) regression method. Delong test was used to compare the AUC values of training set, test sets and cN0 group. The Rad-score showed good discriminating performance with Area Under the ROC Curve (AUC) of 0.917(95% CI, 0.884 to 0.950), 0.892 (95% CI, 0.833 to 0.950) and 0.921 (95% CI, 868 to 0.973) in the training, internal validation cohort and external validation cohort, respectively. The test group of CN0 with a AUC of 0.892 (95% CI, 0.805 to 0.979). The accuracy was 85.4% (sensitivity = 81.3%; specificity = 88.9%) in the training cohort, 82.9% (sensitivity = 79.0%; specificity = 88.7%) in the internal validation cohort, 85.4% (sensitivity = 89.7%; specificity = 83.8%) in the external validation cohort, 86.7% (sensitivity = 83.8%; specificity = 91.3%) in the CN0 test group.The calibration curve demonstrated a significant Rad-score (P-value in H-L test > 0.05). The decision curve analysis indicated that the rad-score was clinically useful. Radiomics has shown great diagnostic potential to preoperatively predict the status of cN0 in PTC.","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":"39 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-024-00690-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To develop and validate radiomics model based on computed tomography (CT) for preoperative prediction of CN0 status in patients with papillary thyroid carcinoma (PTC). A total of 548 pathologically confirmed LNs (243 non-metastatic and 305 metastatic) two distinct hospitals were retrospectively assessed. A total of 396 radiomics features were extracted from arterial-phase CT images, where the strongest features containing the most predictive potential were further selected using the least absolute shrinkage and selection operator (LASSO) regression method. Delong test was used to compare the AUC values of training set, test sets and cN0 group. The Rad-score showed good discriminating performance with Area Under the ROC Curve (AUC) of 0.917(95% CI, 0.884 to 0.950), 0.892 (95% CI, 0.833 to 0.950) and 0.921 (95% CI, 868 to 0.973) in the training, internal validation cohort and external validation cohort, respectively. The test group of CN0 with a AUC of 0.892 (95% CI, 0.805 to 0.979). The accuracy was 85.4% (sensitivity = 81.3%; specificity = 88.9%) in the training cohort, 82.9% (sensitivity = 79.0%; specificity = 88.7%) in the internal validation cohort, 85.4% (sensitivity = 89.7%; specificity = 83.8%) in the external validation cohort, 86.7% (sensitivity = 83.8%; specificity = 91.3%) in the CN0 test group.The calibration curve demonstrated a significant Rad-score (P-value in H-L test > 0.05). The decision curve analysis indicated that the rad-score was clinically useful. Radiomics has shown great diagnostic potential to preoperatively predict the status of cN0 in PTC.
Cancer ImagingONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍:
Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology.
The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include:
Breast Imaging
Chest
Complications of treatment
Ear, Nose & Throat
Gastrointestinal
Hepatobiliary & Pancreatic
Imaging biomarkers
Interventional
Lymphoma
Measurement of tumour response
Molecular functional imaging
Musculoskeletal
Neuro oncology
Nuclear Medicine
Paediatric.