Chao Liu, Tao Wan, Peiyuan Guan, Mengyao Li, Shuo Zhang, Long Hu, Yu-Chieh Kuo, Ziheng Feng, Fandi Chen, Yanzhe Zhu, Haowei Jia, Tao Cao, Tianyue Liang, Tushar Kumeria, Dawei Su, Dewei Chu
{"title":"Unveil the Triple Roles of Water Molecule on Power Generation of MXene Derived TiO2 based Moisture Electric Generator","authors":"Chao Liu, Tao Wan, Peiyuan Guan, Mengyao Li, Shuo Zhang, Long Hu, Yu-Chieh Kuo, Ziheng Feng, Fandi Chen, Yanzhe Zhu, Haowei Jia, Tao Cao, Tianyue Liang, Tushar Kumeria, Dawei Su, Dewei Chu","doi":"10.1002/aenm.202400590","DOIUrl":null,"url":null,"abstract":"<p>Evaporation-driven electricity generators have been proposed to generate electricity by water interacting with nanostructured materials. However, several proposed mechanisms, such as intrinsic gradient of polar functional groups principle and electrokinetic effect perspective, are in wide discrepancy. Here, through the combination of theoretical calculations involving time dimension on material's moisturizing process and experimental analyses, it is revealed the working principle through the water molecule triple roles in driving moisture electric generators (MEGs): 1) intrinsic H<sub>2</sub>O absorption on the material surface and splitting into hydroxy group and proton due to the polarizability of the material surface determined by the static electric potential of the materials. This process induces the electrochemical potential difference of the materials via the work function changes; 2) freely diffused protons derived from the H<sub>2</sub>O splitting work as the ions charge carriers; 3) via the hydrogen bond of the water molecules to drive charge carriers diffuse between opposite electrodes, maintaining the internal circuit current flow. It is successfully unveiled that anatase TiO<sub>2</sub> based materials for output voltage changes correlated to the domains’ work function's difference, tuning by the surface adsorption species (H, Cl, OH) and anisotropic exposed crystal facets of the material. This work unveils MEG's general working principle.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202400590","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Evaporation-driven electricity generators have been proposed to generate electricity by water interacting with nanostructured materials. However, several proposed mechanisms, such as intrinsic gradient of polar functional groups principle and electrokinetic effect perspective, are in wide discrepancy. Here, through the combination of theoretical calculations involving time dimension on material's moisturizing process and experimental analyses, it is revealed the working principle through the water molecule triple roles in driving moisture electric generators (MEGs): 1) intrinsic H2O absorption on the material surface and splitting into hydroxy group and proton due to the polarizability of the material surface determined by the static electric potential of the materials. This process induces the electrochemical potential difference of the materials via the work function changes; 2) freely diffused protons derived from the H2O splitting work as the ions charge carriers; 3) via the hydrogen bond of the water molecules to drive charge carriers diffuse between opposite electrodes, maintaining the internal circuit current flow. It is successfully unveiled that anatase TiO2 based materials for output voltage changes correlated to the domains’ work function's difference, tuning by the surface adsorption species (H, Cl, OH) and anisotropic exposed crystal facets of the material. This work unveils MEG's general working principle.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.