E. Muñoz-Cortés, J. Sánchez-Prieto, B. Zabala, C. Sanchez, E. Flores, A. Flores, E. Roman, J. R. Ares and R. Nevshupa
{"title":"Operando exploration of tribochemical decomposition in synthetic FeS2 thin film and mineral iron pyrite†","authors":"E. Muñoz-Cortés, J. Sánchez-Prieto, B. Zabala, C. Sanchez, E. Flores, A. Flores, E. Roman, J. R. Ares and R. Nevshupa","doi":"10.1039/D3MR00027C","DOIUrl":null,"url":null,"abstract":"<p >Tribochemical decomposition of thin-film synthetic iron disulfide and mineral iron pyrite was studied using a combination of <em>operando</em> mass-spectrometry coupled to ultrahigh vacuum tribochemical cell and the gas expansion system. The composition and kinetics of gas emission were analyzed using an original methodology. It was found that carbon-containing gases were dominating. The sulfur-containing gases comprised H<small><sub>2</sub></small>S, COS and CS<small><sub>2</sub></small>. The latter two were unexpected. The emission of these gases was traced back to solid-state chemical reactions kinetically controlled by the precursor concentrations and driven through non-thermal mechanisms, which we tentatively assigned to formation of sulfur radicals.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d3mr00027c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Mechanochemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mr/d3mr00027c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tribochemical decomposition of thin-film synthetic iron disulfide and mineral iron pyrite was studied using a combination of operando mass-spectrometry coupled to ultrahigh vacuum tribochemical cell and the gas expansion system. The composition and kinetics of gas emission were analyzed using an original methodology. It was found that carbon-containing gases were dominating. The sulfur-containing gases comprised H2S, COS and CS2. The latter two were unexpected. The emission of these gases was traced back to solid-state chemical reactions kinetically controlled by the precursor concentrations and driven through non-thermal mechanisms, which we tentatively assigned to formation of sulfur radicals.