Gang Shao, Pinhua Li, Zheng-Chun Yin, Jun-Shen Chen, Xu-Ling Xia and Guan-Wu Wang
{"title":"Base-mediated trimerization of enones under solvent-free and ball-milling conditions†","authors":"Gang Shao, Pinhua Li, Zheng-Chun Yin, Jun-Shen Chen, Xu-Ling Xia and Guan-Wu Wang","doi":"10.1039/D3MR00010A","DOIUrl":null,"url":null,"abstract":"<p >An efficient mechanochemical trimerization of enones with KO<small><sup><em>t</em></sup></small>Bu as the base and water as the proton source under solvent-free and ambient conditions has been developed. This protocol provides novel, simple, rapid and scalable access to 1,3,5-triaryl-2,4-acyl-cyclohexanols, which exist as chair conformations with all bulky substituents located at equatorial positions. In addition, the formed cyclohexanol derivatives can be further dehydrated to afford the corresponding cyclohexene derivatives with β,γ-unsaturation. By changing the type or amount of the employed base, another type of stereoisomer, where the 4-acyl group is situated at the axial position, can be favorably generated as the major product.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d3mr00010a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Mechanochemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mr/d3mr00010a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An efficient mechanochemical trimerization of enones with KOtBu as the base and water as the proton source under solvent-free and ambient conditions has been developed. This protocol provides novel, simple, rapid and scalable access to 1,3,5-triaryl-2,4-acyl-cyclohexanols, which exist as chair conformations with all bulky substituents located at equatorial positions. In addition, the formed cyclohexanol derivatives can be further dehydrated to afford the corresponding cyclohexene derivatives with β,γ-unsaturation. By changing the type or amount of the employed base, another type of stereoisomer, where the 4-acyl group is situated at the axial position, can be favorably generated as the major product.