Cyclic AMP-regulatory element-binding protein: a novel UV-targeted transcription factor in skin cancer.

IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Photochemical & Photobiological Sciences Pub Date : 2024-06-01 Epub Date: 2024-05-14 DOI:10.1007/s43630-024-00578-7
Julianne C Nayar, Myriam Abboud, Katie M Dixon
{"title":"Cyclic AMP-regulatory element-binding protein: a novel UV-targeted transcription factor in skin cancer.","authors":"Julianne C Nayar, Myriam Abboud, Katie M Dixon","doi":"10.1007/s43630-024-00578-7","DOIUrl":null,"url":null,"abstract":"<p><p>Common therapeutics in relation to melanoma and non-melanoma cancers include the use of kinase inhibitors. The long-term benefits of kinases, however, are limited by development of drug resistance. An alternative approach for treatment would be to focus on transcription factors. Cyclic AMP-regulatory element-binding protein (CREB) is a transcription factor that is commonly overactivated or overexpressed in many different cancers including skin cancer. Ultraviolet radiation (UVR), one of the main causes of skin cancer, can activate CREB in both melanocytes and keratinocytes. In addition, CREB has been found to be activated in skin cancers. Considering the prominent role that CREB plays in skin cancers, the studies reviewed herein raise the possibility of CREB as a potential prognostic and diagnostic marker of skin cancer and a novel target for therapeutic intervention.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"1209-1215"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemical & Photobiological Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s43630-024-00578-7","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Common therapeutics in relation to melanoma and non-melanoma cancers include the use of kinase inhibitors. The long-term benefits of kinases, however, are limited by development of drug resistance. An alternative approach for treatment would be to focus on transcription factors. Cyclic AMP-regulatory element-binding protein (CREB) is a transcription factor that is commonly overactivated or overexpressed in many different cancers including skin cancer. Ultraviolet radiation (UVR), one of the main causes of skin cancer, can activate CREB in both melanocytes and keratinocytes. In addition, CREB has been found to be activated in skin cancers. Considering the prominent role that CREB plays in skin cancers, the studies reviewed herein raise the possibility of CREB as a potential prognostic and diagnostic marker of skin cancer and a novel target for therapeutic intervention.

Abstract Image

环磷酸腺苷调节因子结合蛋白:皮肤癌中一种新型的紫外线靶向转录因子。
黑色素瘤和非黑色素瘤癌症的常见疗法包括使用激酶抑制剂。然而,激酶的长期疗效因产生耐药性而受到限制。另一种治疗方法是关注转录因子。环磷酸腺苷调节因子结合蛋白(CREB)是一种转录因子,通常在包括皮肤癌在内的多种癌症中被过度激活或过度表达。紫外线辐射(UVR)是导致皮肤癌的主要原因之一,它能激活黑色素细胞和角质形成细胞中的 CREB。此外,还发现 CREB 在皮肤癌中被激活。考虑到 CREB 在皮肤癌中的突出作用,本文回顾的研究提出了将 CREB 作为皮肤癌潜在预后和诊断标志物以及治疗干预新靶点的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Photochemical & Photobiological Sciences
Photochemical & Photobiological Sciences 生物-生化与分子生物学
CiteScore
5.60
自引率
6.50%
发文量
201
审稿时长
2.3 months
期刊介绍: A society-owned journal publishing high quality research on all aspects of photochemistry and photobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信