Recent progress in machine learning approaches for predicting carcinogenicity in drug development.

Nguyen Quoc Khanh Le, Thi-Xuan Tran, Phung-Anh Nguyen, Trang-Thi Ho, Van-Nui Nguyen
{"title":"Recent progress in machine learning approaches for predicting carcinogenicity in drug development.","authors":"Nguyen Quoc Khanh Le, Thi-Xuan Tran, Phung-Anh Nguyen, Trang-Thi Ho, Van-Nui Nguyen","doi":"10.1080/17425255.2024.2356162","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This review explores the transformative impact of machine learning (ML) on carcinogenicity prediction within drug development. It discusses the historical context and recent advancements, emphasizing the significance of ML methodologies in overcoming challenges related to data interpretation, ethical considerations, and regulatory acceptance.</p><p><strong>Areas covered: </strong>The review comprehensively examines the integration of ML, deep learning, and diverse artificial intelligence (AI) approaches in various aspects of drug development safety assessments. It explores applications ranging from early-phase compound screening to clinical trial optimization, highlighting the versatility of ML in enhancing predictive accuracy and efficiency.</p><p><strong>Expert opinion: </strong>Through the analysis of traditional approaches such as in vivo rodent bioassays and in vitro assays, the review underscores the limitations and resource intensity associated with these methods. It provides expert insights into how ML offers innovative solutions to address these challenges, revolutionizing safety assessments in drug development.</p>","PeriodicalId":94005,"journal":{"name":"Expert opinion on drug metabolism & toxicology","volume":" ","pages":"621-628"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug metabolism & toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425255.2024.2356162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: This review explores the transformative impact of machine learning (ML) on carcinogenicity prediction within drug development. It discusses the historical context and recent advancements, emphasizing the significance of ML methodologies in overcoming challenges related to data interpretation, ethical considerations, and regulatory acceptance.

Areas covered: The review comprehensively examines the integration of ML, deep learning, and diverse artificial intelligence (AI) approaches in various aspects of drug development safety assessments. It explores applications ranging from early-phase compound screening to clinical trial optimization, highlighting the versatility of ML in enhancing predictive accuracy and efficiency.

Expert opinion: Through the analysis of traditional approaches such as in vivo rodent bioassays and in vitro assays, the review underscores the limitations and resource intensity associated with these methods. It provides expert insights into how ML offers innovative solutions to address these challenges, revolutionizing safety assessments in drug development.

用于预测药物开发致癌性的机器学习方法的最新进展。
导言:本综述探讨了机器学习(ML)对药物开发过程中致癌性预测的变革性影响。它讨论了历史背景和最新进展,强调了机器学习方法在克服数据解读、伦理考虑和监管认可等相关挑战方面的重要意义:本综述全面探讨了将 ML、深度学习和各种人工智能(AI)方法整合到药物开发安全性评估的各个方面。它探讨了从早期化合物筛选到临床试验优化的各种应用,突出了人工智能在提高预测准确性和效率方面的多功能性:通过对体内啮齿动物生物测定和体外检测等传统方法的分析,综述强调了这些方法的局限性和资源密集性。专家观点:通过分析体内啮齿动物生物测定和体外检测等传统方法,综述强调了与这些方法相关的局限性和资源强度,并就如何利用 ML 提供创新解决方案来应对这些挑战、彻底改变药物开发中的安全性评估提供了专业见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信