Lauren M Sanders, Kirill A Grigorev, Ryan T Scott, Amanda M Saravia-Butler, San-Huei Lai Polo, Rachel Gilbert, Eliah G Overbey, JangKeun Kim, Christopher E Mason, Sylvain V Costes
{"title":"Inspiration4 data access through the NASA Open Science Data Repository.","authors":"Lauren M Sanders, Kirill A Grigorev, Ryan T Scott, Amanda M Saravia-Butler, San-Huei Lai Polo, Rachel Gilbert, Eliah G Overbey, JangKeun Kim, Christopher E Mason, Sylvain V Costes","doi":"10.1038/s41526-024-00393-5","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing accessibility of commercial and private space travel necessitates a profound understanding of its impact on human health. The NASA Open Science Data Repository (OSDR) provides transparent and FAIR access to biological studies, notably the SpaceX Inspiration4 (I4) mission, which amassed extensive data from civilian astronauts. This dataset encompasses omics and clinical assays, facilitating comprehensive research on space-induced biological responses. These data allow for multi-modal, longitudinal assessments, bridging the gap between human and model organism studies. Crucially, community-driven data standards established by NASA's OSDR Analysis Working Groups empower artificial intelligence and machine learning to glean invaluable insights, guiding future mission planning and health risk mitigation. This article presents a concise guide to access and analyze I4 data in OSDR, including programmatic access through GLOpenAPI. This pioneering effort establishes a precedent for post-mission health monitoring programs within space agencies, propelling research in the burgeoning field of commercial space travel's impact on human physiology.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"56"},"PeriodicalIF":4.4000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094041/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00393-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing accessibility of commercial and private space travel necessitates a profound understanding of its impact on human health. The NASA Open Science Data Repository (OSDR) provides transparent and FAIR access to biological studies, notably the SpaceX Inspiration4 (I4) mission, which amassed extensive data from civilian astronauts. This dataset encompasses omics and clinical assays, facilitating comprehensive research on space-induced biological responses. These data allow for multi-modal, longitudinal assessments, bridging the gap between human and model organism studies. Crucially, community-driven data standards established by NASA's OSDR Analysis Working Groups empower artificial intelligence and machine learning to glean invaluable insights, guiding future mission planning and health risk mitigation. This article presents a concise guide to access and analyze I4 data in OSDR, including programmatic access through GLOpenAPI. This pioneering effort establishes a precedent for post-mission health monitoring programs within space agencies, propelling research in the burgeoning field of commercial space travel's impact on human physiology.
npj MicrogravityPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍:
A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.