A gray box framework that optimizes a white box logical model using a black box optimizer for simulating cellular responses to perturbations.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2024-05-20 Epub Date: 2024-05-13 DOI:10.1016/j.crmeth.2024.100773
Yunseong Kim, Younghyun Han, Corbin Hopper, Jonghoon Lee, Jae Il Joo, Jeong-Ryeol Gong, Chun-Kyung Lee, Seong-Hoon Jang, Junsoo Kang, Taeyoung Kim, Kwang-Hyun Cho
{"title":"A gray box framework that optimizes a white box logical model using a black box optimizer for simulating cellular responses to perturbations.","authors":"Yunseong Kim, Younghyun Han, Corbin Hopper, Jonghoon Lee, Jae Il Joo, Jeong-Ryeol Gong, Chun-Kyung Lee, Seong-Hoon Jang, Junsoo Kang, Taeyoung Kim, Kwang-Hyun Cho","doi":"10.1016/j.crmeth.2024.100773","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting cellular responses to perturbations requires interpretable insights into molecular regulatory dynamics to perform reliable cell fate control, despite the confounding non-linearity of the underlying interactions. There is a growing interest in developing machine learning-based perturbation response prediction models to handle the non-linearity of perturbation data, but their interpretation in terms of molecular regulatory dynamics remains a challenge. Alternatively, for meaningful biological interpretation, logical network models such as Boolean networks are widely used in systems biology to represent intracellular molecular regulation. However, determining the appropriate regulatory logic of large-scale networks remains an obstacle due to the high-dimensional and discontinuous search space. To tackle these challenges, we present a scalable derivative-free optimizer trained by meta-reinforcement learning for Boolean network models. The logical network model optimized by the trained optimizer successfully predicts anti-cancer drug responses of cancer cell lines, while simultaneously providing insight into their underlying molecular regulatory mechanisms.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100773"},"PeriodicalIF":4.3000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11133856/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting cellular responses to perturbations requires interpretable insights into molecular regulatory dynamics to perform reliable cell fate control, despite the confounding non-linearity of the underlying interactions. There is a growing interest in developing machine learning-based perturbation response prediction models to handle the non-linearity of perturbation data, but their interpretation in terms of molecular regulatory dynamics remains a challenge. Alternatively, for meaningful biological interpretation, logical network models such as Boolean networks are widely used in systems biology to represent intracellular molecular regulation. However, determining the appropriate regulatory logic of large-scale networks remains an obstacle due to the high-dimensional and discontinuous search space. To tackle these challenges, we present a scalable derivative-free optimizer trained by meta-reinforcement learning for Boolean network models. The logical network model optimized by the trained optimizer successfully predicts anti-cancer drug responses of cancer cell lines, while simultaneously providing insight into their underlying molecular regulatory mechanisms.

灰盒框架,利用黑盒优化器优化白盒逻辑模型,模拟细胞对扰动的反应。
预测细胞对扰动的反应需要对分子调控动力学有可解释的见解,以便进行可靠的细胞命运控制,尽管潜在的相互作用存在非线性的干扰。人们对开发基于机器学习的扰动反应预测模型以处理扰动数据的非线性越来越感兴趣,但从分子调控动力学的角度解释这些模型仍是一个挑战。另外,为了进行有意义的生物学解释,系统生物学中广泛使用布尔网络等逻辑网络模型来表示细胞内分子调控。然而,由于高维和不连续的搜索空间,确定大规模网络的适当调控逻辑仍然是一个障碍。为了应对这些挑战,我们提出了一种通过元强化学习为布尔网络模型训练的可扩展无导数优化器。由训练有素的优化器优化的逻辑网络模型可以成功预测癌细胞系的抗癌药物反应,同时还能深入了解其潜在的分子调控机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信