{"title":"The neural implausibility of the diffusion decision model doesn't matter for cognitive psychometrics, but the Ornstein-Uhlenbeck model is better.","authors":"Jia-Shun Wang, Christopher Donkin","doi":"10.3758/s13423-024-02520-5","DOIUrl":null,"url":null,"abstract":"<p><p>In cognitive psychometrics, the parameters of cognitive models are used as measurements of the processes underlying observed behavior. In decision making, the diffusion decision model (DDM) is by far the most commonly used cognitive psychometric tool. One concern when using this model is that more recent theoretical accounts of decision-making place more emphasis on neural plausibility, and thus incorporate many assumptions not found in the DDM. One such model is the Ising Decision Maker (IDM), which builds from the assumption that two pools of neurons with self-excitation and mutual inhibition receive perceptual input from external excitatory fields. In this study, we investigate whether the lack of such mechanisms in the DDM compromises its ability to measure the processes it does purport to measure. We cross-fit the DDM and IDM, and find that the conclusions of DDM would be mostly consistent with those from an analysis using a more neurally plausible model. We also show that the Ornstein-Uhlenbeck Model (OUM) model, a variant of the DDM that includes the potential for leakage (or self-excitation), reaches similar conclusions to the DDM regarding the assumptions they share, while also sharing an interpretation with the IDM in terms of self-excitation (but not leakage). Since the OUM is relatively easy to fit to data, while being able to capture more neurally plausible mechanisms, we propose that it be considered an alternative cognitive psychometric tool to the DDM.</p>","PeriodicalId":20763,"journal":{"name":"Psychonomic Bulletin & Review","volume":" ","pages":"2724-2736"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680627/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychonomic Bulletin & Review","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13423-024-02520-5","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
In cognitive psychometrics, the parameters of cognitive models are used as measurements of the processes underlying observed behavior. In decision making, the diffusion decision model (DDM) is by far the most commonly used cognitive psychometric tool. One concern when using this model is that more recent theoretical accounts of decision-making place more emphasis on neural plausibility, and thus incorporate many assumptions not found in the DDM. One such model is the Ising Decision Maker (IDM), which builds from the assumption that two pools of neurons with self-excitation and mutual inhibition receive perceptual input from external excitatory fields. In this study, we investigate whether the lack of such mechanisms in the DDM compromises its ability to measure the processes it does purport to measure. We cross-fit the DDM and IDM, and find that the conclusions of DDM would be mostly consistent with those from an analysis using a more neurally plausible model. We also show that the Ornstein-Uhlenbeck Model (OUM) model, a variant of the DDM that includes the potential for leakage (or self-excitation), reaches similar conclusions to the DDM regarding the assumptions they share, while also sharing an interpretation with the IDM in terms of self-excitation (but not leakage). Since the OUM is relatively easy to fit to data, while being able to capture more neurally plausible mechanisms, we propose that it be considered an alternative cognitive psychometric tool to the DDM.
期刊介绍:
The journal provides coverage spanning a broad spectrum of topics in all areas of experimental psychology. The journal is primarily dedicated to the publication of theory and review articles and brief reports of outstanding experimental work. Areas of coverage include cognitive psychology broadly construed, including but not limited to action, perception, & attention, language, learning & memory, reasoning & decision making, and social cognition. We welcome submissions that approach these issues from a variety of perspectives such as behavioral measurements, comparative psychology, development, evolutionary psychology, genetics, neuroscience, and quantitative/computational modeling. We particularly encourage integrative research that crosses traditional content and methodological boundaries.