The emerging roles of glutamine amidotransferases in metabolism and immune defense.

IF 1.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Taolin Xie, Chao Qin, Ali Can Savas, Wayne Wei Yeh, Pinghui Feng
{"title":"The emerging roles of glutamine amidotransferases in metabolism and immune defense.","authors":"Taolin Xie, Chao Qin, Ali Can Savas, Wayne Wei Yeh, Pinghui Feng","doi":"10.1080/15257770.2024.2351135","DOIUrl":null,"url":null,"abstract":"<p><p>Glutamine amidotransferases (GATs) catalyze the synthesis of nucleotides, amino acids, glycoproteins and an enzyme cofactor, thus serving as key metabolic enzymes for cell proliferation. <b>C</b>arbamoyl-phosphate synthetase, <b>A</b>spartate transcarbamoylase, and <b>D</b>ihydroorotase (CAD) is a multifunctional enzyme of the GAT family and catalyzes the first three steps of the <i>de novo</i> pyrimidine synthesis. Following our findings that cellular GATs are involved in immune evasion during herpesvirus infection, we discovered that CAD reprograms cellular metabolism to fuel aerobic glycolysis and nucleotide synthesis <i>via</i> deamidating RelA. Deamidated RelA activates the expression of key glycolytic enzymes, rather than that of the inflammatory NF-κB-responsive genes. As such, cancer cells prime RelA for deamidation <i>via</i> up-regulating CAD activity or accumulating RelA mutations. Interestingly, the recently emerged SARS-CoV-2 also activates CAD to couple evasion of inflammatory response to activated nucleotide synthesis. A small molecule inhibitor of CAD depletes nucleotide supply and boosts antiviral inflammatory response, thus greatly reducing SARS-CoV-2 replication. Additionally, we also found that CTP synthase 1 (CTPS1) deamidates interferon (IFN) regulatory factor 3 (IRF3) to mute IFN induction. Our previous studies have implicated phosphoribosyl formylglycinamidine synthase (PFAS) and phosphoribosyl pyrophosphate amidotransferase (PPAT) in deamidating retinoic acid-inducible gene I (RIG-I) and evading dsRNA-induced innate immune defense in herpesvirus infection. Overall, these studies have uncovered an unconventional enzymatic activity of cellular GATs in metabolism and immune defense, offering a molecular link intimately coupling these fundamental biological processes.</p>","PeriodicalId":19343,"journal":{"name":"Nucleosides, Nucleotides & Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleosides, Nucleotides & Nucleic Acids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15257770.2024.2351135","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glutamine amidotransferases (GATs) catalyze the synthesis of nucleotides, amino acids, glycoproteins and an enzyme cofactor, thus serving as key metabolic enzymes for cell proliferation. Carbamoyl-phosphate synthetase, Aspartate transcarbamoylase, and Dihydroorotase (CAD) is a multifunctional enzyme of the GAT family and catalyzes the first three steps of the de novo pyrimidine synthesis. Following our findings that cellular GATs are involved in immune evasion during herpesvirus infection, we discovered that CAD reprograms cellular metabolism to fuel aerobic glycolysis and nucleotide synthesis via deamidating RelA. Deamidated RelA activates the expression of key glycolytic enzymes, rather than that of the inflammatory NF-κB-responsive genes. As such, cancer cells prime RelA for deamidation via up-regulating CAD activity or accumulating RelA mutations. Interestingly, the recently emerged SARS-CoV-2 also activates CAD to couple evasion of inflammatory response to activated nucleotide synthesis. A small molecule inhibitor of CAD depletes nucleotide supply and boosts antiviral inflammatory response, thus greatly reducing SARS-CoV-2 replication. Additionally, we also found that CTP synthase 1 (CTPS1) deamidates interferon (IFN) regulatory factor 3 (IRF3) to mute IFN induction. Our previous studies have implicated phosphoribosyl formylglycinamidine synthase (PFAS) and phosphoribosyl pyrophosphate amidotransferase (PPAT) in deamidating retinoic acid-inducible gene I (RIG-I) and evading dsRNA-induced innate immune defense in herpesvirus infection. Overall, these studies have uncovered an unconventional enzymatic activity of cellular GATs in metabolism and immune defense, offering a molecular link intimately coupling these fundamental biological processes.

谷氨酰胺脒基转移酶在新陈代谢和免疫防御中的新作用。
谷氨酰胺酰胺转移酶(GAT)催化核苷酸、氨基酸、糖蛋白和一种酶辅因子的合成,因此是细胞增殖的关键代谢酶。氨基甲酰基磷酸合成酶、天冬氨酸转氨基甲酰酶和二氢烟酸酶(CAD)是 GAT 家族的多功能酶,催化嘧啶从头合成的前三步。继我们发现细胞 GAT 参与了疱疹病毒感染期间的免疫逃避之后,我们又发现 CAD 通过脱酰胺化 RelA 重编程细胞新陈代谢,为有氧糖酵解和核苷酸合成提供燃料。去酰胺化的 RelA 会激活关键糖酵解酶的表达,而不是激活炎症 NF-κB 反应基因的表达。因此,癌细胞会通过上调 CAD 活性或积累 RelA 突变来对 RelA 进行脱酰胺处理。有趣的是,最近出现的 SARS-CoV-2 也会激活 CAD,将逃避炎症反应与激活核苷酸合成结合起来。CAD的小分子抑制剂会消耗核苷酸的供应,并增强抗病毒炎症反应,从而大大减少SARS-CoV-2的复制。此外,我们还发现 CTP 合成酶 1(CTPS1)能使干扰素(IFN)调节因子 3(IRF3)脱酰胺,从而抑制 IFN 诱导。我们之前的研究表明,磷酸核糖基甲酰甘氨嘧啶合成酶(PFAS)和磷酸核糖基焦磷酸盐脒基转移酶(PPAT)在疱疹病毒感染过程中会氨化视黄酸诱导基因 I(RIG-I)并逃避 dsRNA 诱导的先天性免疫防御。总之,这些研究揭示了细胞 GATs 在新陈代谢和免疫防御中的非传统酶活性,为这些基本生物过程提供了密切联系的分子纽带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nucleosides, Nucleotides & Nucleic Acids
Nucleosides, Nucleotides & Nucleic Acids 生物-生化与分子生物学
CiteScore
2.60
自引率
7.70%
发文量
91
审稿时长
6 months
期刊介绍: Nucleosides, Nucleotides & Nucleic Acids publishes research articles, short notices, and concise, critical reviews of related topics that focus on the chemistry and biology of nucleosides, nucleotides, and nucleic acids. Complete with experimental details, this all-inclusive journal emphasizes the synthesis, biological activities, new and improved synthetic methods, and significant observations related to new compounds.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信