Hanna Cortado, Macie Kercsmar, Birong Li, Gabriela Vasquez-Martinez, Sudipti Gupta, Christina Ching, Gregory Ballash, Israel Cotzomi-Ortega, Yuriko I Sanchez-Zamora, Ester Boix, Diana Zepeda-Orozco, Ashley R Jackson, John David Spencer, Juan de Dios Ruiz-Rosado, Brian Becknell
{"title":"Murine Ribonuclease 6 Limits Bacterial Dissemination during Experimental Urinary Tract Infection.","authors":"Hanna Cortado, Macie Kercsmar, Birong Li, Gabriela Vasquez-Martinez, Sudipti Gupta, Christina Ching, Gregory Ballash, Israel Cotzomi-Ortega, Yuriko I Sanchez-Zamora, Ester Boix, Diana Zepeda-Orozco, Ashley R Jackson, John David Spencer, Juan de Dios Ruiz-Rosado, Brian Becknell","doi":"10.1159/000539177","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The ribonuclease (RNase) A superfamily encodes cationic antimicrobial proteins with potent microbicidal activity toward uropathogenic bacteria. Ribonuclease 6 (RNase6) is an evolutionarily conserved, leukocyte-derived antimicrobial peptide with potent microbicidal activity toward uropathogenic Escherichia coli (UPEC), the most common cause of bacterial urinary tract infections (UTIs). In this study, we generated Rnase6-deficient mice to investigate the hypothesis that endogenous RNase 6 limits host susceptibility to UTI.</p><p><strong>Methods: </strong>We generated a Rnase6EGFP knock-in allele to identify cellular sources of Rnase6 and determine the consequences of homozygous Rnase6 deletion on antimicrobial activity and UTI susceptibility.</p><p><strong>Results: </strong>We identified monocytes and macrophages as the primary cellular sources of Rnase6 in bladders and kidneys of Rnase6EGFP/+ mice. Rnase6 deficiency (i.e., Rnase6EGFP/EGFP) resulted in increased upper urinary tract UPEC burden during experimental UTI, compared to Rnase6+/+ controls. UPEC displayed increased intracellular survival in Rnase6-deficient macrophages.</p><p><strong>Conclusion: </strong>Our findings establish that RNase6 prevents pyelonephritis by promoting intracellular UPEC killing in monocytes and macrophages and reinforce the overarching contributions of endogenous antimicrobial RNase A proteins to host UTI defense.</p>","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250601/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innate Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000539177","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The ribonuclease (RNase) A superfamily encodes cationic antimicrobial proteins with potent microbicidal activity toward uropathogenic bacteria. Ribonuclease 6 (RNase6) is an evolutionarily conserved, leukocyte-derived antimicrobial peptide with potent microbicidal activity toward uropathogenic Escherichia coli (UPEC), the most common cause of bacterial urinary tract infections (UTIs). In this study, we generated Rnase6-deficient mice to investigate the hypothesis that endogenous RNase 6 limits host susceptibility to UTI.
Methods: We generated a Rnase6EGFP knock-in allele to identify cellular sources of Rnase6 and determine the consequences of homozygous Rnase6 deletion on antimicrobial activity and UTI susceptibility.
Results: We identified monocytes and macrophages as the primary cellular sources of Rnase6 in bladders and kidneys of Rnase6EGFP/+ mice. Rnase6 deficiency (i.e., Rnase6EGFP/EGFP) resulted in increased upper urinary tract UPEC burden during experimental UTI, compared to Rnase6+/+ controls. UPEC displayed increased intracellular survival in Rnase6-deficient macrophages.
Conclusion: Our findings establish that RNase6 prevents pyelonephritis by promoting intracellular UPEC killing in monocytes and macrophages and reinforce the overarching contributions of endogenous antimicrobial RNase A proteins to host UTI defense.
期刊介绍:
The ''Journal of Innate Immunity'' is a bimonthly journal covering all aspects within the area of innate immunity, including evolution of the immune system, molecular biology of cells involved in innate immunity, pattern recognition and signals of ‘danger’, microbial corruption, host response and inflammation, mucosal immunity, complement and coagulation, sepsis and septic shock, molecular genomics, and development of immunotherapies. The journal publishes original research articles, short communications, reviews, commentaries and letters to the editors. In addition to regular papers, some issues feature a special section with a thematic focus.