Genome-wide identification and analyses of ZmAPY genes reveal their roles involved in maize development and abiotic stress responses.

IF 2.6 3区 农林科学 Q1 AGRONOMY
Molecular Breeding Pub Date : 2024-05-13 eCollection Date: 2024-05-01 DOI:10.1007/s11032-024-01474-9
Zhenghua He, Jie Zhang, Haitao Jia, Shilong Zhang, Xiaopeng Sun, Elsayed Nishawy, Hui Zhang, Mingqiu Dai
{"title":"Genome-wide identification and analyses of <i>ZmAPY</i> genes reveal their roles involved in maize development and abiotic stress responses.","authors":"Zhenghua He, Jie Zhang, Haitao Jia, Shilong Zhang, Xiaopeng Sun, Elsayed Nishawy, Hui Zhang, Mingqiu Dai","doi":"10.1007/s11032-024-01474-9","DOIUrl":null,"url":null,"abstract":"<p><p>Apyrase is a class of enzyme that catalyzes the hydrolysis of nucleoside triphosphates/diphosphates (NTP/NDP), which widely involved in regulation of plant growth and stress responses. However, apyrase family genes in maize have not been identified, and their characteristics and functions are largely unknown. In this study, we identified 16 apyrases (named as <i>ZmAPY1-ZmAPY16</i>) in maize genome, and analyzed their phylogenetic relationships, gene structures, chromosomal distribution, upstream regulatory transcription factors and expression patterns. Analysis of the transcriptome database unveiled tissue-specific and abiotic stress-responsive expression of <i>ZmAPY</i> genes in maize. qPCR analysis further confirmed their responsiveness to drought, heat, and cold stresses. Association analyses indicated that variations of <i>ZmAPY5 and ZmAPY16</i> may regulate maize agronomic traits and drought responses. Our findings shed light on the molecular characteristics and evolutionary history of maize apyrase genes, highlighting their roles in various biological processes and stress responses. This study forms a basis for further exploration of apyrase functions in maize.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-024-01474-9.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"44 5","pages":"37"},"PeriodicalIF":2.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091030/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-024-01474-9","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Apyrase is a class of enzyme that catalyzes the hydrolysis of nucleoside triphosphates/diphosphates (NTP/NDP), which widely involved in regulation of plant growth and stress responses. However, apyrase family genes in maize have not been identified, and their characteristics and functions are largely unknown. In this study, we identified 16 apyrases (named as ZmAPY1-ZmAPY16) in maize genome, and analyzed their phylogenetic relationships, gene structures, chromosomal distribution, upstream regulatory transcription factors and expression patterns. Analysis of the transcriptome database unveiled tissue-specific and abiotic stress-responsive expression of ZmAPY genes in maize. qPCR analysis further confirmed their responsiveness to drought, heat, and cold stresses. Association analyses indicated that variations of ZmAPY5 and ZmAPY16 may regulate maize agronomic traits and drought responses. Our findings shed light on the molecular characteristics and evolutionary history of maize apyrase genes, highlighting their roles in various biological processes and stress responses. This study forms a basis for further exploration of apyrase functions in maize.

Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01474-9.

Abstract Image

对 ZmAPY 基因的全基因组鉴定和分析揭示了它们在玉米生长发育和非生物胁迫响应中的作用。
芹菜酶是催化三磷酸/二磷酸核苷(NTP/NDP)水解的一类酶,广泛参与植物生长和胁迫反应的调控。然而,玉米中的apyrase家族基因尚未被发现,其特征和功能也基本未知。本研究鉴定了玉米基因组中的16个apyrase(命名为ZmAPY1-ZmAPY16),分析了它们的系统发育关系、基因结构、染色体分布、上游调控转录因子和表达模式。转录组数据库分析揭示了玉米中 ZmAPY 基因的组织特异性和非生物胁迫响应性表达,qPCR 分析进一步证实了它们对干旱、热和冷胁迫的响应性。关联分析表明,ZAPY5和ZAPY16的变异可能调控玉米的农艺性状和干旱响应。我们的研究结果揭示了玉米apyrase基因的分子特征和进化历史,突出了它们在各种生物过程和胁迫响应中的作用。这项研究为进一步探索玉米apyrase的功能奠定了基础:在线版本包含补充材料,见 10.1007/s11032-024-01474-9。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Breeding
Molecular Breeding 农林科学-农艺学
CiteScore
5.60
自引率
6.50%
发文量
67
审稿时长
1.5 months
期刊介绍: Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer. All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others. Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards. Molecular Breeding core areas: Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信