{"title":"N-Doping CQDs as an Efficient Fluorescence Probe Based on Dynamic Quenching for Determination of Copper Ions and Alcohol Sensing in Baijiu.","authors":"Ying Liu, Mengjie Zhao, Xuqi Liu, Shang Feng, Qiufeng Zhu, Shuangyang Li, Xianren Zhang","doi":"10.1007/s10895-024-03749-y","DOIUrl":null,"url":null,"abstract":"<p><p>To address an accurate detection of heavy metal ions in Baijiu production, a nitrogen-doping carbon quantum dots (N-CQDs) was prepared by hydrothermal method from citric acid and urea. The as-prepared N-CQDs had an average particle size of 2.74 nm, and a large number of functional groups (amino, carbonyl group, etc.) attached on its surface, which obtained a 9.6% of quantum yield (QY) with relatively high and stable fluorescence performance. As a fluorescent sensor, the fluorescence of N-CQDs at 380 nm excitation wavelength could be quenched quantitatively by adding Cu<sup>2+</sup>, due to the dynamic quenching of electron transfer caused by the binding of amine groups and Cu<sup>2+</sup>, which showed excellent sensitivity and selectivity to Cu<sup>2+</sup> in the range of 0.5-5 μM with a detection limit (LOD) of 0.032 μM. In addition, the N-CQDs as well as could be applied to quantitative determine alcohol content in the range of 10-80 V/V% depending on the fluorescence enhancement. Upon the experiment, the fluorescent mechanism was studied by Molecular dynamics (MD) simulations, which demonstrated that solvent effect played an influential role on sensing alcohol content in Baijiu. Overall, the work provided a theoretically guide for the design of fluorescence sensors to monitor heavy metal ion in liquid drinks and sense alcohol content.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"3239-3251"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03749-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
To address an accurate detection of heavy metal ions in Baijiu production, a nitrogen-doping carbon quantum dots (N-CQDs) was prepared by hydrothermal method from citric acid and urea. The as-prepared N-CQDs had an average particle size of 2.74 nm, and a large number of functional groups (amino, carbonyl group, etc.) attached on its surface, which obtained a 9.6% of quantum yield (QY) with relatively high and stable fluorescence performance. As a fluorescent sensor, the fluorescence of N-CQDs at 380 nm excitation wavelength could be quenched quantitatively by adding Cu2+, due to the dynamic quenching of electron transfer caused by the binding of amine groups and Cu2+, which showed excellent sensitivity and selectivity to Cu2+ in the range of 0.5-5 μM with a detection limit (LOD) of 0.032 μM. In addition, the N-CQDs as well as could be applied to quantitative determine alcohol content in the range of 10-80 V/V% depending on the fluorescence enhancement. Upon the experiment, the fluorescent mechanism was studied by Molecular dynamics (MD) simulations, which demonstrated that solvent effect played an influential role on sensing alcohol content in Baijiu. Overall, the work provided a theoretically guide for the design of fluorescence sensors to monitor heavy metal ion in liquid drinks and sense alcohol content.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.