Min-Zhi Jiang, Sheila M Gaynor, Xihao Li, Eric Van Buren, Adrienne Stilp, Erin Buth, Fei Fei Wang, Regina Manansala, Stephanie M Gogarten, Zilin Li, Linda M Polfus, Shabnam Salimi, Joshua C Bis, Nathan Pankratz, Lisa R Yanek, Peter Durda, Russell P Tracy, Stephen S Rich, Jerome I Rotter, Braxton D Mitchell, Joshua P Lewis, Bruce M Psaty, Katherine A Pratte, Edwin K Silverman, Robert C Kaplan, Christy Avery, Kari E North, Rasika A Mathias, Nauder Faraday, Honghuang Lin, Biqi Wang, April P Carson, Arnita F Norwood, Richard A Gibbs, Charles Kooperberg, Jessica Lundin, Ulrike Peters, Josée Dupuis, Lifang Hou, Myriam Fornage, Emelia J Benjamin, Alexander P Reiner, Russell P Bowler, Xihong Lin, Paul L Auer, Laura M Raffield
{"title":"Whole genome sequencing based analysis of inflammation biomarkers in the Trans-Omics for Precision Medicine (TOPMed) consortium.","authors":"Min-Zhi Jiang, Sheila M Gaynor, Xihao Li, Eric Van Buren, Adrienne Stilp, Erin Buth, Fei Fei Wang, Regina Manansala, Stephanie M Gogarten, Zilin Li, Linda M Polfus, Shabnam Salimi, Joshua C Bis, Nathan Pankratz, Lisa R Yanek, Peter Durda, Russell P Tracy, Stephen S Rich, Jerome I Rotter, Braxton D Mitchell, Joshua P Lewis, Bruce M Psaty, Katherine A Pratte, Edwin K Silverman, Robert C Kaplan, Christy Avery, Kari E North, Rasika A Mathias, Nauder Faraday, Honghuang Lin, Biqi Wang, April P Carson, Arnita F Norwood, Richard A Gibbs, Charles Kooperberg, Jessica Lundin, Ulrike Peters, Josée Dupuis, Lifang Hou, Myriam Fornage, Emelia J Benjamin, Alexander P Reiner, Russell P Bowler, Xihong Lin, Paul L Auer, Laura M Raffield","doi":"10.1093/hmg/ddae050","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38 465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program (with varying sample size by trait, where the minimum sample size was n = 737 for MMP-1). We identified 22 distinct single-variant associations across 6 traits-E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin-that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"1429-1441"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11305684/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae050","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38 465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program (with varying sample size by trait, where the minimum sample size was n = 737 for MMP-1). We identified 22 distinct single-variant associations across 6 traits-E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin-that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.