Exosome-transmitted circular RNA circ-LMO7 facilitates the progression of osteosarcoma by regulating miR-21-5p/ARHGAP24 axis.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
ACS Applied Energy Materials Pub Date : 2024-12-31 Epub Date: 2024-05-14 DOI:10.1080/15384047.2024.2343450
Anyu Luo, Hanlin Liu, Chen Huang, Sheng Wei
{"title":"Exosome-transmitted circular RNA circ-LMO7 facilitates the progression of osteosarcoma by regulating miR-21-5p/ARHGAP24 axis.","authors":"Anyu Luo, Hanlin Liu, Chen Huang, Sheng Wei","doi":"10.1080/15384047.2024.2343450","DOIUrl":null,"url":null,"abstract":"<p><p>The potential function and mechanism of circRNAs in regulating malignant performances of Osteosarcoma (OS) cells have not been well investigated. The expression level of CircLMO7, miR-21-5p and ARHGAP24 were detected by RT-qPCR. The relationship between miR-21-5p and circ-LMO7, as well as between miR-21-5p and ARHGAP24, was predicted and examined through bioinformatics analysis and luciferase reporter gene experiments. Moreover, OS cell growth, invasion, migration, and apoptosis were detected using the cell counting kit-8 (CCK-8), transwell and flow cytometry assays, respectively. ARHGAP24 protein level was measured using western blotting. In present study, we choose to investigate the role and mechanism of circ-LOM7 on OS cell proliferation, migration and invasion. circ-LOM7 was found to be down-regulated in OS tissues and cell lines. Enforced expression of circ-LOM7 suppressed the growth, invasion, and migration of OS cells. In contrast, decreasing circ-LMO7 expression had opposite effects. Furthermore, miR-21-5p was predicted to be sponged by circ-LMO7, and had an opposite role of circ-LMO7 in OS. Moreover, ARHGAP24 served as miR-21-5p's downstream target. Mechanistically, circ-LMO7 was packed in exosomes and acted as a cancer-suppresser on OS by sponging miR-21-5p and upregulating the expression of ARHGAP24. The exosomal circ-LMO7 expression was significantly decreased in OS cell exosomes, and co-culture experiments showed that exosomal circ-LMO7 suppressed the proliferation ability of OS cells. Circ-LMO7 exerts as a tumor suppressor in OS, and the circ-LMO7/miR-21-5P/ARHGAP24 axis is involved in OS progression.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095575/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2024.2343450","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The potential function and mechanism of circRNAs in regulating malignant performances of Osteosarcoma (OS) cells have not been well investigated. The expression level of CircLMO7, miR-21-5p and ARHGAP24 were detected by RT-qPCR. The relationship between miR-21-5p and circ-LMO7, as well as between miR-21-5p and ARHGAP24, was predicted and examined through bioinformatics analysis and luciferase reporter gene experiments. Moreover, OS cell growth, invasion, migration, and apoptosis were detected using the cell counting kit-8 (CCK-8), transwell and flow cytometry assays, respectively. ARHGAP24 protein level was measured using western blotting. In present study, we choose to investigate the role and mechanism of circ-LOM7 on OS cell proliferation, migration and invasion. circ-LOM7 was found to be down-regulated in OS tissues and cell lines. Enforced expression of circ-LOM7 suppressed the growth, invasion, and migration of OS cells. In contrast, decreasing circ-LMO7 expression had opposite effects. Furthermore, miR-21-5p was predicted to be sponged by circ-LMO7, and had an opposite role of circ-LMO7 in OS. Moreover, ARHGAP24 served as miR-21-5p's downstream target. Mechanistically, circ-LMO7 was packed in exosomes and acted as a cancer-suppresser on OS by sponging miR-21-5p and upregulating the expression of ARHGAP24. The exosomal circ-LMO7 expression was significantly decreased in OS cell exosomes, and co-culture experiments showed that exosomal circ-LMO7 suppressed the proliferation ability of OS cells. Circ-LMO7 exerts as a tumor suppressor in OS, and the circ-LMO7/miR-21-5P/ARHGAP24 axis is involved in OS progression.

外泌体传递的环状 RNA circ-LMO7 通过调控 miR-21-5p/ARHGAP24 轴促进骨肉瘤的进展。
circRNAs在调控骨肉瘤(OS)细胞恶性表现方面的潜在功能和机制尚未得到很好的研究。本研究采用 RT-qPCR 方法检测了 CircLMO7、miR-21-5p 和 ARHGAP24 的表达水平。通过生物信息学分析和荧光素酶报告基因实验,预测并研究了 miR-21-5p 与 circ-LMO7 以及 miR-21-5p 与 ARHGAP24 之间的关系。此外,还分别使用细胞计数试剂盒-8(CCK-8)、透孔法和流式细胞术检测了 OS 细胞的生长、侵袭、迁移和凋亡。Western印迹法检测了ARHGAP24蛋白水平。本研究选择探究circ-LOM7在OS细胞增殖、迁移和侵袭中的作用和机制。强制表达 circ-LOM7 可抑制 OS 细胞的生长、侵袭和迁移。相反,降低 circ-LMO7 的表达则会产生相反的效果。此外,预计miR-21-5p会被circ-LMO7疏导,并在OS中发挥与circ-LMO7相反的作用。此外,ARHGAP24是miR-21-5p的下游靶标。从机理上讲,circ-LMO7被包裹在外泌体中,通过海绵化miR-21-5p和上调ARHGAP24的表达对OS起到抑癌作用。外泌体circ-LMO7在OS细胞外泌体中的表达明显下降,共培养实验表明外泌体circ-LMO7抑制了OS细胞的增殖能力。Circ-LMO7是OS的肿瘤抑制因子,而circ-LMO7/miR-21-5P/ARHGAP24轴参与了OS的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信