Boosting Up Electrosynthesis of Urea with Nitrate and Carbon Dioxide via Synergistic Effect of Metallic Iron Cluster and Single-Atom

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-05-15 DOI:10.1002/smll.202400036
Zhiwen Li, Mengqiu Xu, Jiaqian Wang, Yifei Zhang, Wen Liu, Xinrui Gu, Zhong-Kang Han, Wei Ye, Gao Li
{"title":"Boosting Up Electrosynthesis of Urea with Nitrate and Carbon Dioxide via Synergistic Effect of Metallic Iron Cluster and Single-Atom","authors":"Zhiwen Li,&nbsp;Mengqiu Xu,&nbsp;Jiaqian Wang,&nbsp;Yifei Zhang,&nbsp;Wen Liu,&nbsp;Xinrui Gu,&nbsp;Zhong-Kang Han,&nbsp;Wei Ye,&nbsp;Gao Li","doi":"10.1002/smll.202400036","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalytic conversion of nitrates and carbon dioxide to urea under ambient conditions shows promise as a potential substitute for traditional urea synthesis processes characterized by high consumption and pollution. In this study, a straightforward one-pot method is employed to prepare a highly efficient FeNC-Fe<sub>1</sub>N<sub>4</sub> electrocatalyst, consisting of atomically dispersed Fe<sub>1</sub>N<sub>4</sub> sites and metallic Fe clusters (FeNC) with particle size of 4–7 nm. The FeNC-Fe<sub>1</sub>N<sub>4</sub> catalyst exhibits remarkable electrocatalytic activity for urea synthesis from nitrate anion (NO<sub>3</sub><sup>−</sup>) and carbon dioxide (CO<sub>2</sub>), achieving a urea production rate of 38.2 mmol g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup> at −0.9 V (vs RHE) and a Faradaic efficiency of 66.5% at −0.6 V (vs RHE). Both experimental and theoretical results conclusively demonstrate that metallic Fe clusters and Fe<sub>1</sub>N<sub>4</sub> species provide active sites for the adsorption and activation of NO<sub>3</sub><sup>−</sup> and CO<sub>2</sub>, respectively, and the synergistic effect between Fe<sub>1</sub>N<sub>4</sub> and metallic Fe clusters significantly enhances the electrochemical efficiency of urea synthesis. In all, this work contributes to the rational design and comprehensive synthesis of a dual-active site iron-based electrocatalyst, facilitating efficient and sustainable urea synthesis.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"20 38","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202400036","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic conversion of nitrates and carbon dioxide to urea under ambient conditions shows promise as a potential substitute for traditional urea synthesis processes characterized by high consumption and pollution. In this study, a straightforward one-pot method is employed to prepare a highly efficient FeNC-Fe1N4 electrocatalyst, consisting of atomically dispersed Fe1N4 sites and metallic Fe clusters (FeNC) with particle size of 4–7 nm. The FeNC-Fe1N4 catalyst exhibits remarkable electrocatalytic activity for urea synthesis from nitrate anion (NO3) and carbon dioxide (CO2), achieving a urea production rate of 38.2 mmol gcat−1 h−1 at −0.9 V (vs RHE) and a Faradaic efficiency of 66.5% at −0.6 V (vs RHE). Both experimental and theoretical results conclusively demonstrate that metallic Fe clusters and Fe1N4 species provide active sites for the adsorption and activation of NO3 and CO2, respectively, and the synergistic effect between Fe1N4 and metallic Fe clusters significantly enhances the electrochemical efficiency of urea synthesis. In all, this work contributes to the rational design and comprehensive synthesis of a dual-active site iron-based electrocatalyst, facilitating efficient and sustainable urea synthesis.

Abstract Image

Abstract Image

通过金属铁簇和单原子的协同效应提高尿素与硝酸盐和二氧化碳的电合成。
在环境条件下通过电催化将硝酸盐和二氧化碳转化为尿素,有望替代高消耗、高污染的传统尿素合成工艺。本研究采用简单的一锅法制备了一种高效的 FeNC-Fe1N4 电催化剂,它由原子分散的 Fe1N4 位点和粒径为 4-7 纳米的金属 Fe 簇(FeNC)组成。FeNC-Fe1N4 催化剂在以硝酸阴离子(NO3 -)和二氧化碳(CO2)为原料合成尿素的过程中表现出显著的电催化活性,在 -0.9 V(相对于 RHE)电压下,尿素生产率达到 38.2 mmol gcat -1 h-1,在 -0.6 V(相对于 RHE)电压下,法拉第效率达到 66.5%。实验和理论结果均证实,金属 Fe 簇和 Fe1N4 物种分别为 NO3 - 和 CO2 的吸附和活化提供了活性位点,Fe1N4 与金属 Fe 簇之间的协同效应显著提高了尿素合成的电化学效率。总之,这项工作有助于合理设计和综合合成双活性位点铁基电催化剂,促进高效和可持续的尿素合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信