A selectivity switch for CO2 electroreduction by continuously tuned semi-coherent interface

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2024-09-12 DOI:10.1016/j.chempr.2024.04.009
{"title":"A selectivity switch for CO2 electroreduction by continuously tuned semi-coherent interface","authors":"","doi":"10.1016/j.chempr.2024.04.009","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Mass production of Au–Cu-based catalysts with tailored selectivity<span> is a complex and challenging task. We report a semi-affinity strategy to realize the synthesis of Au–Cu Janus nanocrystals with continuously tuned interfaces (from dimer, Janus, acorn-like Janus, to core-shell) based on Au </span></span>nanosphere<span><span> seeds. We highlight the role of interfacial strain due to a large lattice mismatch<span> in growth control. The systematic electrochemical evaluation shows that the interfacial Cu oxide state, ∗CO coverage, and intermediate adsorption configuration can be well tuned by tailoring the Janus </span></span>nanostructure. Optimized Au–Cu Janus catalyst reaches an efficiency of up to 80.0% for C</span></span><sub>2+</sub><span> product with a partial current density of 466.1 mA cm</span><sup>−2</sup><span>. The reaction products can be selectively switched from methanol (dimer) to ethanol (Janus) and further to ethylene (acorn-like Janus) by increasing the interface area of the Au–Cu heterostructures. The catalytic mechanisms are unraveled by </span><span><em>operando</em></span><span> surface-enhanced Raman spectroscopy (SERS) analysis and density functional theory calculations.</span></p></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 9","pages":"Pages 2745-2760"},"PeriodicalIF":19.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424001736","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mass production of Au–Cu-based catalysts with tailored selectivity is a complex and challenging task. We report a semi-affinity strategy to realize the synthesis of Au–Cu Janus nanocrystals with continuously tuned interfaces (from dimer, Janus, acorn-like Janus, to core-shell) based on Au nanosphere seeds. We highlight the role of interfacial strain due to a large lattice mismatch in growth control. The systematic electrochemical evaluation shows that the interfacial Cu oxide state, ∗CO coverage, and intermediate adsorption configuration can be well tuned by tailoring the Janus nanostructure. Optimized Au–Cu Janus catalyst reaches an efficiency of up to 80.0% for C2+ product with a partial current density of 466.1 mA cm−2. The reaction products can be selectively switched from methanol (dimer) to ethanol (Janus) and further to ethylene (acorn-like Janus) by increasing the interface area of the Au–Cu heterostructures. The catalytic mechanisms are unraveled by operando surface-enhanced Raman spectroscopy (SERS) analysis and density functional theory calculations.

Abstract Image

Abstract Image

通过连续调谐半相干界面实现二氧化碳电还原的选择性开关
量产具有定制选择性的金-铜基催化剂是一项复杂而具有挑战性的任务。我们报告了一种半亲和性策略,以金纳米球种子为基础,实现了具有不断调整的界面(从二聚体、Janus、橡树果状 Janus 到核壳状)的金-铜 Janus 纳米晶体的合成。我们强调了大晶格失配导致的界面应变在生长控制中的作用。系统电化学评估表明,通过定制 Janus 纳米结构,可以很好地调整界面氧化铜状态、∗CO 覆盖率和中间吸附构型。优化后的 Au-Cu Janus 催化剂在部分电流密度为 466.1 mA cm-2 的情况下,C2+ 产物的效率高达 80.0%。通过增大金-铜异质结构的界面面积,反应产物可选择性地从甲醇(二聚体)转化为乙醇(Janus),并进一步转化为乙烯(橡树醛样 Janus)。通过操作表面增强拉曼光谱(SERS)分析和密度泛函理论计算,揭示了催化机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信