Peritectic orthopyroxene entrainment during partial melting of garnet peridotite produced the Bushveld Complex chromite deposits

IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Tahnee Otto, Gary Stevens, Jean-François Moyen, Matthew J Mayne, John D Clemens
{"title":"Peritectic orthopyroxene entrainment during partial melting of garnet peridotite produced the Bushveld Complex chromite deposits","authors":"Tahnee Otto, Gary Stevens, Jean-François Moyen, Matthew J Mayne, John D Clemens","doi":"10.1007/s00126-024-01277-0","DOIUrl":null,"url":null,"abstract":"<p>One of the largest chromium deposits on Earth occurs in the Rustenburg Layered Suite (RLS) of the Bushveld Complex as laterally continuous chromitite layers. None of the hypotheses proposed for the origin of the chromitites can explain both the abundance of Cr in the RLS and the unusual enrichment in Cr and V over Ni, relative to typical depleted mantle values. This study investigates the possibility that the layering and chromitite formation are consequences of the entrainment of source components into the magmas that formed the RLS. Thermodynamic modelling results reveal a wedge-shaped domain in pressure-temperature space in the subcratonic mantle within which Cr-bearing orthopyroxene forms as a peritectic product of incongruent melting. Entrainment of this orthopyroxene produces magmas that crystallise peritectic olivine and chromite on ascent, due to the consumption of orthopyroxene by melt. The chromite- and olivine-bearing magmas intrude as sills and can produce chromite and dunite layers by density separation. This model, which interprets the RLS Sr-isotopic composition to reflect prior mantle metasomatism by crustal fluids (ideally ancient and of low volume), readily explains the formation of chromitite layers from relatively thin sills, as well as the very high ratios of Cr and V to other compatible elements relative to typical mantle compositions. The special circumstances required to produce the RLS chromitites do not relate to some oddity of repetitive crustal assimilation or magma compositions that allow chromite-only saturation. Rather, they relate to speed of melting and magma extraction which enabled peritectic orthopyroxene entrainment to the magmas.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-024-01277-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

One of the largest chromium deposits on Earth occurs in the Rustenburg Layered Suite (RLS) of the Bushveld Complex as laterally continuous chromitite layers. None of the hypotheses proposed for the origin of the chromitites can explain both the abundance of Cr in the RLS and the unusual enrichment in Cr and V over Ni, relative to typical depleted mantle values. This study investigates the possibility that the layering and chromitite formation are consequences of the entrainment of source components into the magmas that formed the RLS. Thermodynamic modelling results reveal a wedge-shaped domain in pressure-temperature space in the subcratonic mantle within which Cr-bearing orthopyroxene forms as a peritectic product of incongruent melting. Entrainment of this orthopyroxene produces magmas that crystallise peritectic olivine and chromite on ascent, due to the consumption of orthopyroxene by melt. The chromite- and olivine-bearing magmas intrude as sills and can produce chromite and dunite layers by density separation. This model, which interprets the RLS Sr-isotopic composition to reflect prior mantle metasomatism by crustal fluids (ideally ancient and of low volume), readily explains the formation of chromitite layers from relatively thin sills, as well as the very high ratios of Cr and V to other compatible elements relative to typical mantle compositions. The special circumstances required to produce the RLS chromitites do not relate to some oddity of repetitive crustal assimilation or magma compositions that allow chromite-only saturation. Rather, they relate to speed of melting and magma extraction which enabled peritectic orthopyroxene entrainment to the magmas.

Abstract Image

石榴石橄榄岩部分熔化过程中的围岩正长石夹带产生了布什维尔德复合铬铁矿床
地球上最大的铬矿床之一位于布什维尔德复合体的拉斯腾堡层状岩套(RLS)中,为横向连续的铬铁矿层。关于铬铁矿成因的各种假说都无法解释 RLS 中铬的丰度以及铬和钒相对于镍的异常富集(与典型的贫化地幔值相比)。本研究探讨了分层和铬铁矿的形成是否可能是源成分夹杂到形成 RLS 的岩浆中的结果。热力学建模结果显示,在亚克拉通地幔的压力-温度空间中存在一个楔形域,在该域中,含Cr的正长辉石作为不协调熔融的围岩产物形成。由于熔体消耗了正辉石,这种正辉石的夹带产生的岩浆在上升过程中结晶出橄榄石和铬铁矿。含铬铁矿和橄榄石的岩浆以岩屑的形式侵入,通过密度分离产生铬铁矿和白云母层。这一模型将 RLS 的锶同位素组成解释为反映了地幔先前由地壳流体(最好是古老的低体积流体)进行的变质作用,很容易解释铬铁矿层从相对较薄的岩浆中形成的原因,以及相对于典型的地幔成分,铬和钒与其他相容元素的比率非常高的原因。产生 RLS 铬铁矿所需的特殊环境与重复地壳同化或岩浆成分允许仅铬饱和的某些怪异现象无关。相反,它们与熔化和岩浆萃取的速度有关,这种速度使得岩浆中能够夹带围岩正长石。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mineralium Deposita
Mineralium Deposita 地学-地球化学与地球物理
CiteScore
11.00
自引率
6.20%
发文量
61
审稿时长
6 months
期刊介绍: The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信