Shear behavior of cement-stabilized silty clay exposed to low-temperature curing

IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL
Jianguo Lu , Liling Tan , Wansheng Pei , Jiajia Gao , Fei Deng , Xiaoxun Zhou , Zhexi Zhang
{"title":"Shear behavior of cement-stabilized silty clay exposed to low-temperature curing","authors":"Jianguo Lu ,&nbsp;Liling Tan ,&nbsp;Wansheng Pei ,&nbsp;Jiajia Gao ,&nbsp;Fei Deng ,&nbsp;Xiaoxun Zhou ,&nbsp;Zhexi Zhang","doi":"10.1016/j.coldregions.2024.104215","DOIUrl":null,"url":null,"abstract":"<div><p>Cement-stabilized soils are widely used in civil engineering applications. However, they inevitably encounter low-temperature curing conditions, particularly in cold regions. In this study, shear experiments were conducted on cement-stabilized silty clays with different dry densities, cement contents, curing ages and temperatures. The factors influencing the shear performance of cement-stabilized soils were analyzed. The results showed that the peak value of the shear stress-displacement curve of the cement-stabilized silty clay increased with the vertical pressure, and the failure patterns for soils with and without cement significantly differed. Generally, the soils without cement underwent ductile failure, whereas the cement-stabilized soils experienced brittle failure. The shear strength and cohesion of the cement-stabilized soils increased with cement content, dry density, curing age and temperature. In addition, the ice and hydration products significantly influenced the internal friction angle of the cement-stabilized soils. An optimal cement content for silty clay was determined to obtain the largest internal friction angle, which ranged from 12% to 15%. Furthermore, at the curing temperature of −2 °C, the edge-face contact form accounted for the majority with a relatively high porosity, but the morphology of C-S-H changed from a sheet-like form to reticulate structure when the curing temperature increased to 22 °C. However, the contribution of the ice crystals to the shear strength was less significant than that of the hydration products. This study provides insights into the mechanical and microstructural properties of cement-stabilized soils in cold-region geotechnical construction.</p></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X2400096X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Cement-stabilized soils are widely used in civil engineering applications. However, they inevitably encounter low-temperature curing conditions, particularly in cold regions. In this study, shear experiments were conducted on cement-stabilized silty clays with different dry densities, cement contents, curing ages and temperatures. The factors influencing the shear performance of cement-stabilized soils were analyzed. The results showed that the peak value of the shear stress-displacement curve of the cement-stabilized silty clay increased with the vertical pressure, and the failure patterns for soils with and without cement significantly differed. Generally, the soils without cement underwent ductile failure, whereas the cement-stabilized soils experienced brittle failure. The shear strength and cohesion of the cement-stabilized soils increased with cement content, dry density, curing age and temperature. In addition, the ice and hydration products significantly influenced the internal friction angle of the cement-stabilized soils. An optimal cement content for silty clay was determined to obtain the largest internal friction angle, which ranged from 12% to 15%. Furthermore, at the curing temperature of −2 °C, the edge-face contact form accounted for the majority with a relatively high porosity, but the morphology of C-S-H changed from a sheet-like form to reticulate structure when the curing temperature increased to 22 °C. However, the contribution of the ice crystals to the shear strength was less significant than that of the hydration products. This study provides insights into the mechanical and microstructural properties of cement-stabilized soils in cold-region geotechnical construction.

水泥稳定的淤泥质粘土在低温固化条件下的剪切行为
水泥稳定土被广泛应用于土木工程领域。然而,它们不可避免地会遇到低温固化条件,尤其是在寒冷地区。本研究对不同干密度、水泥含量、固化龄期和温度的水泥稳定淤泥进行了剪切实验。分析了影响水泥稳定土剪切性能的因素。结果表明,水泥稳定淤泥质粘土的剪应力-位移曲线峰值随垂直压力的增加而增大,有水泥和无水泥土壤的破坏模式存在显著差异。一般来说,不含水泥的土壤会发生韧性破坏,而水泥稳定的土壤则会发生脆性破坏。水泥稳定土的剪切强度和内聚力随水泥含量、干密度、固化龄期和温度的增加而增加。此外,冰和水化产物对水泥稳定土的内摩擦角也有很大影响。为获得最大内摩擦角,确定了淤泥质粘土的最佳水泥含量,其范围为 12% 至 15%。此外,在固化温度为-2 °C时,边-面接触形式占大多数,孔隙率相对较高,但当固化温度升至22 °C时,C-S-H的形态从片状变为网状结构。不过,冰晶对剪切强度的贡献不如水合产物显著。这项研究为寒冷地区岩土工程建设中水泥稳定土的力学和微观结构特性提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cold Regions Science and Technology
Cold Regions Science and Technology 工程技术-地球科学综合
CiteScore
7.40
自引率
12.20%
发文量
209
审稿时长
4.9 months
期刊介绍: Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere. Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost. Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信