Huilin Guo , Qiping Zhao , Haixia Wang, Shunhai Zhu, Hui Dong, Xinrui Xie, Lihui Wang, Lang Chen, Hongyu Han
{"title":"Molecular characterization and functional analysis of Eimeria tenella ankyrin repeat-containing protein","authors":"Huilin Guo , Qiping Zhao , Haixia Wang, Shunhai Zhu, Hui Dong, Xinrui Xie, Lihui Wang, Lang Chen, Hongyu Han","doi":"10.1016/j.ejop.2024.126089","DOIUrl":null,"url":null,"abstract":"<div><p>Chicken coccidiosis causes disastrous losses to the poultry industry all over the world. <em>Eimeria tenella</em> is the most prevalent of these disease-causing species. Our former RNA-seq indicated that <em>E. tenella</em> ankyrin repeat-containing protein (<em>Et</em>ANK) was expressed differently between drug-sensitive (DS) and drug-resistant strains. In this study, we cloned <em>Et</em>ANK and analyzed its translational and transcriptional levels using quantitative real-time PCR (qPCR) and western blotting. The data showed that <em>Et</em>ANK was significantly upregulated in diclazuril-resistant (DZR) strain and maduramicin-resistant (MRR) strain compared with the drug-sensitive (DS) strain. In addition, the transcription levels in the DZR strains isolated from the field were higher than in the DS strain. The translation levels of <em>Et</em>ANK were higher in unsporulated oocysts (UO) than in sporozoites (SZ), sporulated oocysts (SO), or second-generation merozoites (SM), and the protein levels in SM were significantly higher than in UO, SO, and SZ. The results of the indirect immunofluorescence localization showed that the protein was distributed mainly at the anterior region of SZ and on the surface and in the cytoplasm of SM. The fluorescence intensity increased further with its development in vitro. An anti-r<em>Et</em>ANK polyclonal antibody inhibited the invasive ability of <em>E. tenella</em> in DF-1 cells. These results showed that <em>Et</em>ANK may be related to host cell invasion, required for the parasite’s growth in the host, and may be involved in the development of <em>E. tenella</em> resistance to some drugs.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0932473924000397","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chicken coccidiosis causes disastrous losses to the poultry industry all over the world. Eimeria tenella is the most prevalent of these disease-causing species. Our former RNA-seq indicated that E. tenella ankyrin repeat-containing protein (EtANK) was expressed differently between drug-sensitive (DS) and drug-resistant strains. In this study, we cloned EtANK and analyzed its translational and transcriptional levels using quantitative real-time PCR (qPCR) and western blotting. The data showed that EtANK was significantly upregulated in diclazuril-resistant (DZR) strain and maduramicin-resistant (MRR) strain compared with the drug-sensitive (DS) strain. In addition, the transcription levels in the DZR strains isolated from the field were higher than in the DS strain. The translation levels of EtANK were higher in unsporulated oocysts (UO) than in sporozoites (SZ), sporulated oocysts (SO), or second-generation merozoites (SM), and the protein levels in SM were significantly higher than in UO, SO, and SZ. The results of the indirect immunofluorescence localization showed that the protein was distributed mainly at the anterior region of SZ and on the surface and in the cytoplasm of SM. The fluorescence intensity increased further with its development in vitro. An anti-rEtANK polyclonal antibody inhibited the invasive ability of E. tenella in DF-1 cells. These results showed that EtANK may be related to host cell invasion, required for the parasite’s growth in the host, and may be involved in the development of E. tenella resistance to some drugs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.