{"title":"An in vitro feasibility study of 355 nm laser atherectomy for the treatment of peripheral atherosclerotic lesions","authors":"Hui Wang, Hui Zuo, Dikang Pan, Yihui Cao, Yiqun Zhang, Duan Liu, Lianrui Guo, Jianming Guo","doi":"10.1002/jbio.202400110","DOIUrl":null,"url":null,"abstract":"<p>In this study, we utilized a novel 355 nm laser to ablate porcine aortas in the presence of physiological saline and contrast agent. Subsequently, we investigated the shape and depth of the resulting injuries. After ablating bovine tendons and aortas with the laser, we analyzed the size and quantity of particles postablation. Finally, we conducted ablation experiments using human ex vivo plaques. The analysis revealed minimal damage to porcine aortas within 2 s of exposure to the 355 nm laser. The degree of injury in the presence of contrast agent was higher than that in the presence of physiological saline but significantly lower than the damage caused by 308 nm laser. Regardless of whether it was bovine tendon or porcine aorta tissue, the proportion of particles <25 μm postlaser ablation exceeded 99%. Lastly, the 355 nm laser successfully opened three types of plaques: chronically occluded, stent restenosis, and stale thrombosis.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400110","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we utilized a novel 355 nm laser to ablate porcine aortas in the presence of physiological saline and contrast agent. Subsequently, we investigated the shape and depth of the resulting injuries. After ablating bovine tendons and aortas with the laser, we analyzed the size and quantity of particles postablation. Finally, we conducted ablation experiments using human ex vivo plaques. The analysis revealed minimal damage to porcine aortas within 2 s of exposure to the 355 nm laser. The degree of injury in the presence of contrast agent was higher than that in the presence of physiological saline but significantly lower than the damage caused by 308 nm laser. Regardless of whether it was bovine tendon or porcine aorta tissue, the proportion of particles <25 μm postlaser ablation exceeded 99%. Lastly, the 355 nm laser successfully opened three types of plaques: chronically occluded, stent restenosis, and stale thrombosis.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.