{"title":"Morphological Diversity and Evolution of Jaw Morphologies in Zeiform Fishes (Teleostei, Paracanthopterygii).","authors":"J W Peters, K K Duclos, M V H Wilson, T C Grande","doi":"10.1093/iob/obae011","DOIUrl":null,"url":null,"abstract":"<p><p>Zeiformes (dories, tinselfishes, and oreos) are primarily benthopelagic acanthomorph fishes, distributed between 50 and 1000 m depth on continental slopes and on flanks of oceanic islands and seamounts. Among the interesting morphological adaptations of zeiform fishes are their unique and highly protrusible jaws involving premaxillae with long ascending processes and a four-bar linkage, including mobile palatines that pivot on their posterior articulation. This adaptation for increased jaw protrusion has enabled zeiform fishes to capture elusive prey more efficiently and is arguably a major factor in their morphological diversity and evolutionary success. This study examines the evolution of zeiform jaw morphologies using 3D landmark-based multivariate morphometrics as well as phylomorphospace analysis. Results show that the descendants of the zeiform ancestor branched rapidly early in their history, retaining conservative jaw morphologies during this early branching, but subsequently strongly diverged in many of the resulting lineages. Results from this study are compared with earlier research based on overall body form, demonstrating that morphological variation within Zeiformes arose along at least two distinct trajectories: body form and jaw morphology. Variation among genera in body form is not associated with variation among the same genera in jaw morphology, and vice versa. Hypotheses to explain the apparent decoupling of body shape and jaw morphology are addressed along with avenues for further study to better understand the morphological evolution of these iconic fishes.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":"6 1","pages":"obae011"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090498/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Organismal Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/iob/obae011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Zeiformes (dories, tinselfishes, and oreos) are primarily benthopelagic acanthomorph fishes, distributed between 50 and 1000 m depth on continental slopes and on flanks of oceanic islands and seamounts. Among the interesting morphological adaptations of zeiform fishes are their unique and highly protrusible jaws involving premaxillae with long ascending processes and a four-bar linkage, including mobile palatines that pivot on their posterior articulation. This adaptation for increased jaw protrusion has enabled zeiform fishes to capture elusive prey more efficiently and is arguably a major factor in their morphological diversity and evolutionary success. This study examines the evolution of zeiform jaw morphologies using 3D landmark-based multivariate morphometrics as well as phylomorphospace analysis. Results show that the descendants of the zeiform ancestor branched rapidly early in their history, retaining conservative jaw morphologies during this early branching, but subsequently strongly diverged in many of the resulting lineages. Results from this study are compared with earlier research based on overall body form, demonstrating that morphological variation within Zeiformes arose along at least two distinct trajectories: body form and jaw morphology. Variation among genera in body form is not associated with variation among the same genera in jaw morphology, and vice versa. Hypotheses to explain the apparent decoupling of body shape and jaw morphology are addressed along with avenues for further study to better understand the morphological evolution of these iconic fishes.