Parameter subset reduction for imaging-based digital twin generation of patients with left ventricular mechanical discoordination.

IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Tijmen Koopsen, Nick van Osta, Tim van Loon, Roel Meiburg, Wouter Huberts, Ahmed S Beela, Feddo P Kirkels, Bas R van Klarenbosch, Arco J Teske, Maarten J Cramer, Geertruida P Bijvoet, Antonius van Stipdonk, Kevin Vernooy, Tammo Delhaas, Joost Lumens
{"title":"Parameter subset reduction for imaging-based digital twin generation of patients with left ventricular mechanical discoordination.","authors":"Tijmen Koopsen, Nick van Osta, Tim van Loon, Roel Meiburg, Wouter Huberts, Ahmed S Beela, Feddo P Kirkels, Bas R van Klarenbosch, Arco J Teske, Maarten J Cramer, Geertruida P Bijvoet, Antonius van Stipdonk, Kevin Vernooy, Tammo Delhaas, Joost Lumens","doi":"10.1186/s12938-024-01232-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Integration of a patient's non-invasive imaging data in a digital twin (DT) of the heart can provide valuable insight into the myocardial disease substrates underlying left ventricular (LV) mechanical discoordination. However, when generating a DT, model parameters should be identifiable to obtain robust parameter estimations. In this study, we used the CircAdapt model of the human heart and circulation to find a subset of parameters which were identifiable from LV cavity volume and regional strain measurements of patients with different substrates of left bundle branch block (LBBB) and myocardial infarction (MI). To this end, we included seven patients with heart failure with reduced ejection fraction (HFrEF) and LBBB (study ID: 2018-0863, registration date: 2019-10-07), of which four were non-ischemic (LBBB-only) and three had previous MI (LBBB-MI), and six narrow QRS patients with MI (MI-only) (study ID: NL45241.041.13, registration date: 2013-11-12). Morris screening method (MSM) was applied first to find parameters which were important for LV volume, regional strain, and strain rate indices. Second, this parameter subset was iteratively reduced based on parameter identifiability and reproducibility. Parameter identifiability was based on the diaphony calculated from quasi-Monte Carlo simulations and reproducibility was based on the intraclass correlation coefficient ( <math><mrow><mi>ICC</mi></mrow> </math> ) obtained from repeated parameter estimation using dynamic multi-swarm particle swarm optimization. Goodness-of-fit was defined as the mean squared error ( <math> <msup><mrow><mi>χ</mi></mrow> <mn>2</mn></msup> </math> ) of LV myocardial strain, strain rate, and cavity volume.</p><p><strong>Results: </strong>A subset of 270 parameters remained after MSM which produced high-quality DTs of all patients ( <math> <msup><mrow><mi>χ</mi></mrow> <mn>2</mn></msup> </math>  < 1.6), but minimum parameter reproducibility was poor ( <math> <msub><mrow><mi>ICC</mi></mrow> <mrow><mi>min</mi></mrow> </msub> </math>  = 0.01). Iterative reduction yielded a reproducible ( <math> <msub><mrow><mi>ICC</mi></mrow> <mrow><mi>min</mi></mrow> </msub> </math>  = 0.83) subset of 75 parameters, including cardiac output, global LV activation duration, regional mechanical activation delay, and regional LV myocardial constitutive properties. This reduced subset produced patient-resembling DTs ( <math> <msup><mrow><mi>χ</mi></mrow> <mn>2</mn></msup> </math>  < 2.2), while septal-to-lateral wall workload imbalance was higher for the LBBB-only DTs than for the MI-only DTs (p < 0.05).</p><p><strong>Conclusions: </strong>By applying sensitivity and identifiability analysis, we successfully determined a parameter subset of the CircAdapt model which can be used to generate imaging-based DTs of patients with LV mechanical discoordination. Parameters were reproducibly estimated using particle swarm optimization, and derived LV myocardial work distribution was representative for the patient's underlying disease substrate. This DT technology enables patient-specific substrate characterization and can potentially be used to support clinical decision making.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"23 1","pages":"46"},"PeriodicalIF":2.9000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089736/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-024-01232-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Integration of a patient's non-invasive imaging data in a digital twin (DT) of the heart can provide valuable insight into the myocardial disease substrates underlying left ventricular (LV) mechanical discoordination. However, when generating a DT, model parameters should be identifiable to obtain robust parameter estimations. In this study, we used the CircAdapt model of the human heart and circulation to find a subset of parameters which were identifiable from LV cavity volume and regional strain measurements of patients with different substrates of left bundle branch block (LBBB) and myocardial infarction (MI). To this end, we included seven patients with heart failure with reduced ejection fraction (HFrEF) and LBBB (study ID: 2018-0863, registration date: 2019-10-07), of which four were non-ischemic (LBBB-only) and three had previous MI (LBBB-MI), and six narrow QRS patients with MI (MI-only) (study ID: NL45241.041.13, registration date: 2013-11-12). Morris screening method (MSM) was applied first to find parameters which were important for LV volume, regional strain, and strain rate indices. Second, this parameter subset was iteratively reduced based on parameter identifiability and reproducibility. Parameter identifiability was based on the diaphony calculated from quasi-Monte Carlo simulations and reproducibility was based on the intraclass correlation coefficient ( ICC ) obtained from repeated parameter estimation using dynamic multi-swarm particle swarm optimization. Goodness-of-fit was defined as the mean squared error ( χ 2 ) of LV myocardial strain, strain rate, and cavity volume.

Results: A subset of 270 parameters remained after MSM which produced high-quality DTs of all patients ( χ 2  < 1.6), but minimum parameter reproducibility was poor ( ICC min  = 0.01). Iterative reduction yielded a reproducible ( ICC min  = 0.83) subset of 75 parameters, including cardiac output, global LV activation duration, regional mechanical activation delay, and regional LV myocardial constitutive properties. This reduced subset produced patient-resembling DTs ( χ 2  < 2.2), while septal-to-lateral wall workload imbalance was higher for the LBBB-only DTs than for the MI-only DTs (p < 0.05).

Conclusions: By applying sensitivity and identifiability analysis, we successfully determined a parameter subset of the CircAdapt model which can be used to generate imaging-based DTs of patients with LV mechanical discoordination. Parameters were reproducibly estimated using particle swarm optimization, and derived LV myocardial work distribution was representative for the patient's underlying disease substrate. This DT technology enables patient-specific substrate characterization and can potentially be used to support clinical decision making.

基于成像的左心室机械不协调患者数字双胞胎生成的参数子集缩减。
背景:将患者的非侵入性成像数据整合到心脏的数字孪生(DT)中,可为了解左心室(LV)机械失调的心肌疾病基础提供有价值的信息。然而,在生成 DT 时,模型参数应该是可识别的,以便获得稳健的参数估计。在这项研究中,我们使用了人体心脏和循环的 CircAdapt 模型,从左束支传导阻滞(LBBB)和心肌梗塞(MI)不同基质患者的左心室腔容积和区域应变测量结果中找到了可识别的参数子集。为此,我们纳入了七名射血分数降低的心力衰竭(HFrEF)和LBBB患者(研究编号:2018-0863,注册日期:2019-10-07),其中四名为非缺血性患者(仅LBBB),三名既往有心肌梗死(LBBB-MI),以及六名有心肌梗死的窄QRS患者(仅MI)(研究编号:NL45241.041.13,注册日期:2013-11-12)。首先应用莫里斯筛选法(MSM)找出对左心室容积、区域应变和应变率指数重要的参数。其次,根据参数的可识别性和可重复性对参数子集进行迭代缩减。参数的可识别性基于准蒙特卡罗模拟计算出的二重性,而可重复性则基于使用动态多群粒子群优化技术进行重复参数估计时获得的类内相关系数(ICC)。拟合优度定义为左心室心肌应变、应变率和空腔容积的均方误差(χ 2):结果:经过 MSM 后,剩下的 270 个参数子集产生了所有患者的高质量 DT(χ 2 ICC min = 0.01)。迭代缩减产生了可重复的 75 个参数子集(ICC min = 0.83),包括心输出量、整体左心室激活持续时间、区域机械激活延迟和区域左心室心肌构成特性。这一缩小的子集产生了与患者相似的 DT ( χ 2 结论:通过应用敏感性和可识别性分析,我们成功确定了 CircAdapt 模型的参数子集,该子集可用于生成基于成像的左心室机械不协调患者的 DT。利用粒子群优化技术对参数进行了可重复的估算,得出的左心室心肌功分布对患者的潜在疾病基质具有代表性。这种 DT 技术可对患者进行特异性基质特征描述,并可用于支持临床决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BioMedical Engineering OnLine
BioMedical Engineering OnLine 工程技术-工程:生物医学
CiteScore
6.70
自引率
2.60%
发文量
79
审稿时长
1 months
期刊介绍: BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering. BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to: Bioinformatics- Bioinstrumentation- Biomechanics- Biomedical Devices & Instrumentation- Biomedical Signal Processing- Healthcare Information Systems- Human Dynamics- Neural Engineering- Rehabilitation Engineering- Biomaterials- Biomedical Imaging & Image Processing- BioMEMS and On-Chip Devices- Bio-Micro/Nano Technologies- Biomolecular Engineering- Biosensors- Cardiovascular Systems Engineering- Cellular Engineering- Clinical Engineering- Computational Biology- Drug Delivery Technologies- Modeling Methodologies- Nanomaterials and Nanotechnology in Biomedicine- Respiratory Systems Engineering- Robotics in Medicine- Systems and Synthetic Biology- Systems Biology- Telemedicine/Smartphone Applications in Medicine- Therapeutic Systems, Devices and Technologies- Tissue Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信