The versatile CYP74 clan enzyme CYP440A19 from the European lancelet Branchiostoma lanceolatum biosynthesizes novel macrolactone, epoxydiene, and related oxylipins
Elena O. Smirnova , Natalia V. Lantsova , Mats Hamberg , Yana Y. Toporkova , Alexander N. Grechkin
{"title":"The versatile CYP74 clan enzyme CYP440A19 from the European lancelet Branchiostoma lanceolatum biosynthesizes novel macrolactone, epoxydiene, and related oxylipins","authors":"Elena O. Smirnova , Natalia V. Lantsova , Mats Hamberg , Yana Y. Toporkova , Alexander N. Grechkin","doi":"10.1016/j.bbalip.2024.159507","DOIUrl":null,"url":null,"abstract":"<div><p>The present work reports the detection and cloning of a new CYP74 clan gene of the European lancelet (<em>Branchiostoma lanceolatum</em>) and the biochemical characterization of the recombinant protein CYP440A19. CYP440A19 possessed epoxyalcohol synthase (EAS) activity towards the 13-hydroperoxides of linoleic and α-linolenic acids, which were converted into oxiranylcarbinols, i.e., (11<em>S</em>,12<em>R</em>,13<em>S</em>)-11-hydroxy-12,13-epoxy derivatives. The conversion of 9-hydroperoxides produced distinct products. Linoleic acid 9(<em>S</em>)-hydroperoxide (9-HPOD) was mainly converted into 9,14-diol (10<em>E</em>,12<em>E</em>)-9,14-dihydroxy-10,12-octadecadienoic acid and macrolactone 9(<em>S</em>),10(<em>R</em>)-epoxy-11(<em>E</em>)-octadecen-13(<em>S</em>)-olide. In addition, (8<em>Z</em>)-colneleic acid was formed. Brief incubations of the enzyme with 9-HPOD in a biphasic system of hexane–water enabled the isolation of the short-lived 9,10-epoxydiene (9<em>S</em>,10<em>R</em>,11<em>E</em>,13<em>E</em>)-9,10-epoxy-11,13-octadecadienoic acid. The structure and stereochemistry of the epoxyalcohols, macrolactone, (8<em>Z</em>)-colneleic acid (Me), and 9,10-epoxydiene (Me) were confirmed by <sup>1</sup>H-NMR, <sup>1</sup>H-<sup>1</sup>H-COSY, <sup>1</sup>H-<sup>13</sup>C-HSQC, and <sup>1</sup>H-<sup>13</sup>C-HMBC spectroscopy. Macrolactone and <em>cis</em>-9,10-epoxydiene are novel products. The 9-hydroperoxide of α-linolenic acid was mainly converted into macrolactone 9(<em>S</em>),10(<em>R</em>)-epoxy-11(<em>E</em>),15(<em>Z</em>)-octadecadiene-13(<em>S</em>)-olide and a minority of divinyl ethers, particularly (8<em>Z</em>)-colnelenic acid. The versatility of enzyme catalysis, as well as the diversity of CYP74s and other enzymes involved in oxylipin biosynthesis, demonstrates the complexity of the lipoxygenase pathway in lancelets.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 6","pages":"Article 159507"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138819812400057X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present work reports the detection and cloning of a new CYP74 clan gene of the European lancelet (Branchiostoma lanceolatum) and the biochemical characterization of the recombinant protein CYP440A19. CYP440A19 possessed epoxyalcohol synthase (EAS) activity towards the 13-hydroperoxides of linoleic and α-linolenic acids, which were converted into oxiranylcarbinols, i.e., (11S,12R,13S)-11-hydroxy-12,13-epoxy derivatives. The conversion of 9-hydroperoxides produced distinct products. Linoleic acid 9(S)-hydroperoxide (9-HPOD) was mainly converted into 9,14-diol (10E,12E)-9,14-dihydroxy-10,12-octadecadienoic acid and macrolactone 9(S),10(R)-epoxy-11(E)-octadecen-13(S)-olide. In addition, (8Z)-colneleic acid was formed. Brief incubations of the enzyme with 9-HPOD in a biphasic system of hexane–water enabled the isolation of the short-lived 9,10-epoxydiene (9S,10R,11E,13E)-9,10-epoxy-11,13-octadecadienoic acid. The structure and stereochemistry of the epoxyalcohols, macrolactone, (8Z)-colneleic acid (Me), and 9,10-epoxydiene (Me) were confirmed by 1H-NMR, 1H-1H-COSY, 1H-13C-HSQC, and 1H-13C-HMBC spectroscopy. Macrolactone and cis-9,10-epoxydiene are novel products. The 9-hydroperoxide of α-linolenic acid was mainly converted into macrolactone 9(S),10(R)-epoxy-11(E),15(Z)-octadecadiene-13(S)-olide and a minority of divinyl ethers, particularly (8Z)-colnelenic acid. The versatility of enzyme catalysis, as well as the diversity of CYP74s and other enzymes involved in oxylipin biosynthesis, demonstrates the complexity of the lipoxygenase pathway in lancelets.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.