Hydrogenated graphene systems: A novel growth and hydrogenation process

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Samuel Escobar Veras , Ernesto Espada , Solimar Collazo , Marcel Grau , Rajesh Katiyar , Vladimir I. Makarov , Brad R. Weiner , Gerardo Morell
{"title":"Hydrogenated graphene systems: A novel growth and hydrogenation process","authors":"Samuel Escobar Veras ,&nbsp;Ernesto Espada ,&nbsp;Solimar Collazo ,&nbsp;Marcel Grau ,&nbsp;Rajesh Katiyar ,&nbsp;Vladimir I. Makarov ,&nbsp;Brad R. Weiner ,&nbsp;Gerardo Morell","doi":"10.1016/j.cartre.2024.100360","DOIUrl":null,"url":null,"abstract":"<div><p>Octadecylphosphonic acid self-assembled monolayers were used as a combined carbon and hydrogen source to grow graphene films on sapphire substrates via hot filament chemical vapor deposition. The functionalized substrates were sealed with a thin Cu film and heated to 950°C under Ar flow. After synthesis, the Cu was etched away. The graphene samples then underwent a hydrogenation treatment in the same reactor setup, exposed to a CH<sub>4</sub>/H<sub>2</sub> gas mixture at 820°C for 2 hours. The structure and properties of the graphene films before and after hydrogenation were characterized. Raman spectroscopy was employed to probe the defect-related bands and C-H bonding. X-ray diffraction provided insights into the crystalline structure and interlayer spacing. The ferromagnetic response was measured using a PPMS system across a range of temperatures and magnetic fields. XPS was used to assess the chemical composition and bonding. This multi-step process enabled a detailed evaluation of the novel synthesis protocol and its effects on the resulting hydrogenated graphene material.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000415/pdfft?md5=f0c52cad96fc046310457d1ccb58b371&pid=1-s2.0-S2667056924000415-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Octadecylphosphonic acid self-assembled monolayers were used as a combined carbon and hydrogen source to grow graphene films on sapphire substrates via hot filament chemical vapor deposition. The functionalized substrates were sealed with a thin Cu film and heated to 950°C under Ar flow. After synthesis, the Cu was etched away. The graphene samples then underwent a hydrogenation treatment in the same reactor setup, exposed to a CH4/H2 gas mixture at 820°C for 2 hours. The structure and properties of the graphene films before and after hydrogenation were characterized. Raman spectroscopy was employed to probe the defect-related bands and C-H bonding. X-ray diffraction provided insights into the crystalline structure and interlayer spacing. The ferromagnetic response was measured using a PPMS system across a range of temperatures and magnetic fields. XPS was used to assess the chemical composition and bonding. This multi-step process enabled a detailed evaluation of the novel synthesis protocol and its effects on the resulting hydrogenated graphene material.

氢化石墨烯系统:新型生长和氢化工艺
利用十八烷基膦酸自组装单层作为碳氢结合源,通过热丝化学气相沉积在蓝宝石基底上生长石墨烯薄膜。功能化后的基底用一层薄薄的铜膜密封,并在氩气流下加热至 950°C。合成完成后,铜被蚀刻掉。然后,石墨烯样品在相同的反应器装置中进行氢化处理,暴露在 820°C 的 CH4/H2 混合气体中 2 小时。对氢化前后石墨烯薄膜的结构和特性进行了表征。拉曼光谱用于探测与缺陷相关的波段和 C-H 键。X 射线衍射可深入了解晶体结构和层间距。使用 PPMS 系统在一定温度和磁场范围内测量了铁磁响应。XPS 用于评估化学成分和化学键。通过这一多步骤过程,可以详细评估新型合成方案及其对氢化石墨烯材料的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信