Fick’s law selects the Neumann boundary condition

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Danielle Hilhorst , Seung-Min Kang , Ho-Youn Kim , Yong-Jung Kim
{"title":"Fick’s law selects the Neumann boundary condition","authors":"Danielle Hilhorst ,&nbsp;Seung-Min Kang ,&nbsp;Ho-Youn Kim ,&nbsp;Yong-Jung Kim","doi":"10.1016/j.na.2024.113561","DOIUrl":null,"url":null,"abstract":"<div><p>We show that the Neumann boundary condition appears along the boundary of an inner domain when the diffusivity of the outer domain goes to zero. We take Fick’s diffusion law with a bistable reaction function, and the diffusivity is 1 in the inner domain and <span><math><mrow><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> in the outer domain. The convergence of the solution as <span><math><mrow><mi>ϵ</mi><mo>→</mo><mn>0</mn></mrow></math></span> is shown, where the limit satisfies the Neumann boundary condition along the boundary of an inner domain. This observation says that the Neumann boundary condition is a natural choice of boundary conditions when Fick’s diffusion law is taken.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24000804","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the Neumann boundary condition appears along the boundary of an inner domain when the diffusivity of the outer domain goes to zero. We take Fick’s diffusion law with a bistable reaction function, and the diffusivity is 1 in the inner domain and ϵ>0 in the outer domain. The convergence of the solution as ϵ0 is shown, where the limit satisfies the Neumann boundary condition along the boundary of an inner domain. This observation says that the Neumann boundary condition is a natural choice of boundary conditions when Fick’s diffusion law is taken.

菲克定律选择诺依曼边界条件
我们证明,当外域的扩散系数为零时,内域边界会出现诺依曼边界条件。我们采用具有双稳态反应函数的菲克扩散定律,内域的扩散率为 1,外域的扩散率为 ϵ>0。结果表明,当ϵ→0 时,解收敛,此时沿内域边界的极限满足诺伊曼边界条件。这一观察结果表明,当采用菲克扩散定律时,诺依曼边界条件是边界条件的自然选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信