P. Vallés , J. Fernández-Pato , M. Morales-Hernández , I. Echeverribar , P. García-Navarro
{"title":"A 2D shallow water flow model with 1D internal boundary condition for subgrid-scale topography","authors":"P. Vallés , J. Fernández-Pato , M. Morales-Hernández , I. Echeverribar , P. García-Navarro","doi":"10.1016/j.advwatres.2024.104716","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a dynamic internal boundary condition is used as subgrid model in a two-dimensional (2D) model based on the shallow water equations in order to model narrow regions in the domain. In this way, computational savings are sought, since it is not necessary to discretize these regions with cells of reduced size. The new internal boundary condition simplifies other works where 1D–2D coupled models were presented, since the 1D model is a subgrid for the 2D mesh, so the coupling between both models is simple and direct. The coupling is performed using mass conservation, simplifying the calculation in the transfer between both models. Test cases are studied to validate the implemented boundary condition, and a mountain catchment as a realistic case. The results obtained with a fully 2D mesh and a 2D mesh with rills in narrow regions are very similar, with a large reduction in computational cost when using rills, both in test cases and in the realistic case. Thus, the use of the implemented internal boundary condition is an effective tool to study regions with narrow regions by reducing the computational cost with little loss of accuracy in the results.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"189 ","pages":"Article 104716"},"PeriodicalIF":4.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0309170824001039/pdfft?md5=f4731eeb835f0f7a91547194f107d99c&pid=1-s2.0-S0309170824001039-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170824001039","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a dynamic internal boundary condition is used as subgrid model in a two-dimensional (2D) model based on the shallow water equations in order to model narrow regions in the domain. In this way, computational savings are sought, since it is not necessary to discretize these regions with cells of reduced size. The new internal boundary condition simplifies other works where 1D–2D coupled models were presented, since the 1D model is a subgrid for the 2D mesh, so the coupling between both models is simple and direct. The coupling is performed using mass conservation, simplifying the calculation in the transfer between both models. Test cases are studied to validate the implemented boundary condition, and a mountain catchment as a realistic case. The results obtained with a fully 2D mesh and a 2D mesh with rills in narrow regions are very similar, with a large reduction in computational cost when using rills, both in test cases and in the realistic case. Thus, the use of the implemented internal boundary condition is an effective tool to study regions with narrow regions by reducing the computational cost with little loss of accuracy in the results.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes