{"title":"Oxygen-transfer reactions by enzymatic flavin-N5 oxygen adducts—Oxidation is not a must","authors":"Robin Teufel","doi":"10.1016/j.cbpa.2024.102464","DOIUrl":null,"url":null,"abstract":"<div><p>Flavoenzymes catalyze numerous redox reactions including the transfer of an O<sub>2</sub>-derived oxygen atom to organic substrates, while the other one is reduced to water. Investigation of some of these monooxygenases led to a detailed understanding of their catalytic cycle, which involves the flavin-C<sub>4α</sub>-(hydro)peroxide as hallmark oxygenating species, and newly discovered flavoprotein monooxygenases were generally assumed to operate similarly. However, discoveries in recent years revealed a broader mechanistic versatility, including enzymes that utilize flavin-N<sub>5</sub> oxygen adducts for catalysis in the form of the flavin-N<sub>5</sub>-(hydro)peroxide and the flavin-N<sub>5</sub>-oxide species. In this review, I will highlight recent developments in that area, including noncanonical flavoenzymes from natural product biosynthesis and sulfur metabolism that provide first insights into the chemical properties of these species. Remarkably, some enzymes may even combine the flavin-N<sub>5</sub>-peroxide and the flavin-N<sub>5</sub>-oxide species for consecutive oxygen-transfers to the same substrate and thereby in essence operate as dioxygenases.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"80 ","pages":"Article 102464"},"PeriodicalIF":6.9000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000401/pdfft?md5=8da170b60e8a1b645e526e1bec5a4df5&pid=1-s2.0-S1367593124000401-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593124000401","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Flavoenzymes catalyze numerous redox reactions including the transfer of an O2-derived oxygen atom to organic substrates, while the other one is reduced to water. Investigation of some of these monooxygenases led to a detailed understanding of their catalytic cycle, which involves the flavin-C4α-(hydro)peroxide as hallmark oxygenating species, and newly discovered flavoprotein monooxygenases were generally assumed to operate similarly. However, discoveries in recent years revealed a broader mechanistic versatility, including enzymes that utilize flavin-N5 oxygen adducts for catalysis in the form of the flavin-N5-(hydro)peroxide and the flavin-N5-oxide species. In this review, I will highlight recent developments in that area, including noncanonical flavoenzymes from natural product biosynthesis and sulfur metabolism that provide first insights into the chemical properties of these species. Remarkably, some enzymes may even combine the flavin-N5-peroxide and the flavin-N5-oxide species for consecutive oxygen-transfers to the same substrate and thereby in essence operate as dioxygenases.
期刊介绍:
COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.