Omics data classification using constitutive artificial neural network optimized with single candidate optimizer.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Subramaniam Madhan, Anbarasan Kalaiselvan
{"title":"Omics data classification using constitutive artificial neural network optimized with single candidate optimizer.","authors":"Subramaniam Madhan, Anbarasan Kalaiselvan","doi":"10.1080/0954898X.2024.2348726","DOIUrl":null,"url":null,"abstract":"<p><p>Recent technical advancements enable omics-based biological study of molecules with very high throughput and low cost, such as genomic, proteomic, and microbionics'. To overcome this drawback, Omics Data Classification using Constitutive Artificial Neural Network Optimized with Single Candidate Optimizer (ODC-ZOA-CANN-SCO) is proposed in this manuscript. The input data is pre-processing by using Adaptive variational Bayesian filtering (AVBF) to replace missing values. The pre-processing data is fed to Zebra Optimization Algorithm (ZOA) for dimensionality reduction. Then, the Constitutive Artificial Neural Network (CANN) is employed to classify omics data. The weight parameter is optimized by Single Candidate Optimizer (SCO). The proposed ODC-ZOA-CANN-SCO method attains 25.36%, 21.04%, 22.18%, 26.90%, and 28.12% higher accuracy when analysed to the existing methods like multi-omics data integration utilizing adaptive graph learning and attention mode for patient categorization with biomarker identification (MOD-AGL-AM-PABI), deep learning method depending upon multi-omics data integration to create risk stratification prediction mode for skin cutaneous melanoma (DL-MODI-RSP-SCM), Deep belief network-base model for identifying Alzheimer's disease utilizing multi-omics data (DDN-DAD-MOD), hybrid cancer prediction depending upon multi-omics data and reinforcement learning state action reward state action (HCP-MOD-RL-SARSA), machine learning basis method under omics data including biological knowledge database for cancer clinical endpoint prediction (ML-ODBKD-CCEP) methods, respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-25"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2348726","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recent technical advancements enable omics-based biological study of molecules with very high throughput and low cost, such as genomic, proteomic, and microbionics'. To overcome this drawback, Omics Data Classification using Constitutive Artificial Neural Network Optimized with Single Candidate Optimizer (ODC-ZOA-CANN-SCO) is proposed in this manuscript. The input data is pre-processing by using Adaptive variational Bayesian filtering (AVBF) to replace missing values. The pre-processing data is fed to Zebra Optimization Algorithm (ZOA) for dimensionality reduction. Then, the Constitutive Artificial Neural Network (CANN) is employed to classify omics data. The weight parameter is optimized by Single Candidate Optimizer (SCO). The proposed ODC-ZOA-CANN-SCO method attains 25.36%, 21.04%, 22.18%, 26.90%, and 28.12% higher accuracy when analysed to the existing methods like multi-omics data integration utilizing adaptive graph learning and attention mode for patient categorization with biomarker identification (MOD-AGL-AM-PABI), deep learning method depending upon multi-omics data integration to create risk stratification prediction mode for skin cutaneous melanoma (DL-MODI-RSP-SCM), Deep belief network-base model for identifying Alzheimer's disease utilizing multi-omics data (DDN-DAD-MOD), hybrid cancer prediction depending upon multi-omics data and reinforcement learning state action reward state action (HCP-MOD-RL-SARSA), machine learning basis method under omics data including biological knowledge database for cancer clinical endpoint prediction (ML-ODBKD-CCEP) methods, respectively.

使用单候选优化器优化的构成型人工神经网络进行 Omics 数据分类。
最近的技术进步使基于全局组学的分子生物学研究(如基因组学、蛋白质组学和微生物学)能够以极高的通量和较低的成本进行。为了克服这一缺点,本手稿提出了使用单候选优化器优化的构成型人工神经网络(ODC-ZOA-CANN-SCO)进行全息数据分类。使用自适应变异贝叶斯滤波(AVBF)对输入数据进行预处理,以替换缺失值。预处理后的数据被送入斑马优化算法(ZOA)进行降维处理。然后,采用构造人工神经网络(CANN)对 omics 数据进行分类。权重参数通过单候选优化器(SCO)进行优化。拟议的 ODC-ZOA-CANN-SCO 方法的准确率分别为 25.36%、21.04%、22.18%、26.90% 和 28.12%。与现有方法(如利用自适应图学习和注意力模式进行多组学数据整合以识别生物标记物的患者分类方法(MOD-AGL-AM-PABI)、利用多组学数据整合创建皮肤黑色素瘤风险分层预测模式的深度学习方法(DL-MODI-RSP-SCM))相比,拟议的 ODC-ZOA-CANN-SCO 方法的准确率分别提高了 25.36%、21.04%、22.18%、26.90% 和 28.12%、利用多组学数据识别阿尔茨海默病的深度信念网络基础模型(DDN-DAD-MOD)、基于多组学数据和强化学习状态行动奖赏状态行动的混合癌症预测方法(HCP-MOD-RL-SARSA)、包括生物知识数据库在内的omics数据下机器学习基础方法用于癌症临床终点预测(ML-ODBKD-CCEP)等方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信