Using a simple model to systematically examine the influence of force-velocity profile and power on vertical jump performance with different constraints.
{"title":"Using a simple model to systematically examine the influence of force-velocity profile and power on vertical jump performance with different constraints.","authors":"William B Haug, Matthew T G Pain","doi":"10.1080/14763141.2024.2351615","DOIUrl":null,"url":null,"abstract":"<p><p>Power, and recently force-velocity (F-V) profiling, are well-researched and oft cited critical components for sports performance but both are still debated; some would say misused. A neat, applied formulation of power and linear F-V in the literature is practically useful but there is a dearth of fundamental explanations of how power and F-V interact with human and environmental constraints. To systematically explore the interactions of a linear F-V profile, peak power, gravity, mass, range of motion (ROM), and initial activation conditions, a forward dynamics point mass model of vertical jumping was parameterised from an athlete. With no constraints and for a given peak power, F-V favouring higher velocity performed better, but were impacted more under real-world conditions of gravity and finite ROM meaning the better F-V was dependent on constraints. Increasing peak power invariably increased jump height but improvement was dependent on the initial F-V and if it was altered by changing maximal force or velocity. When mass was changed along with power and F-V there was a non-linear interaction and jump improvement could be almost as large for a F-V change as an increase in power. An ideal F-V profile cannot be identified without knowledge of mass and ROM.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2024.2351615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Power, and recently force-velocity (F-V) profiling, are well-researched and oft cited critical components for sports performance but both are still debated; some would say misused. A neat, applied formulation of power and linear F-V in the literature is practically useful but there is a dearth of fundamental explanations of how power and F-V interact with human and environmental constraints. To systematically explore the interactions of a linear F-V profile, peak power, gravity, mass, range of motion (ROM), and initial activation conditions, a forward dynamics point mass model of vertical jumping was parameterised from an athlete. With no constraints and for a given peak power, F-V favouring higher velocity performed better, but were impacted more under real-world conditions of gravity and finite ROM meaning the better F-V was dependent on constraints. Increasing peak power invariably increased jump height but improvement was dependent on the initial F-V and if it was altered by changing maximal force or velocity. When mass was changed along with power and F-V there was a non-linear interaction and jump improvement could be almost as large for a F-V change as an increase in power. An ideal F-V profile cannot be identified without knowledge of mass and ROM.