Multiresolution semantic segmentation of biological structures in digital histopathology.

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2024-05-01 Epub Date: 2024-05-09 DOI:10.1117/1.JMI.11.3.037501
Sina Salsabili, Adrian D C Chan, Eranga Ukwatta
{"title":"Multiresolution semantic segmentation of biological structures in digital histopathology.","authors":"Sina Salsabili, Adrian D C Chan, Eranga Ukwatta","doi":"10.1117/1.JMI.11.3.037501","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Semantic segmentation in high-resolution, histopathology whole slide images (WSIs) is an important fundamental task in various pathology applications. Convolutional neural networks (CNN) are the state-of-the-art approach for image segmentation. A patch-based CNN approach is often employed because of the large size of WSIs; however, segmentation performance is sensitive to the field-of-view and resolution of the input patches, and balancing the trade-offs is challenging when there are drastic size variations in the segmented structures. We propose a multiresolution semantic segmentation approach, which is capable of addressing the threefold trade-off between field-of-view, computational efficiency, and spatial resolution in histopathology WSIs.</p><p><strong>Approach: </strong>We propose a two-stage multiresolution approach for semantic segmentation of histopathology WSIs of mouse lung tissue and human placenta. In the first stage, we use four different CNNs to extract the contextual information from input patches at four different resolutions. In the second stage, we use another CNN to aggregate the extracted information in the first stage and generate the final segmentation masks.</p><p><strong>Results: </strong>The proposed method reported 95.6%, 92.5%, and 97.1% in our single-class placenta dataset and 97.1%, 87.3%, and 83.3% in our multiclass lung dataset for pixel-wise accuracy, mean Dice similarity coefficient, and mean positive predictive value, respectively.</p><p><strong>Conclusions: </strong>The proposed multiresolution approach demonstrated high accuracy and consistency in the semantic segmentation of biological structures of different sizes in our single-class placenta and multiclass lung histopathology WSI datasets. Our study can potentially be used in automated analysis of biological structures, facilitating the clinical research in histopathology applications.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 3","pages":"037501"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086667/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.3.037501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Semantic segmentation in high-resolution, histopathology whole slide images (WSIs) is an important fundamental task in various pathology applications. Convolutional neural networks (CNN) are the state-of-the-art approach for image segmentation. A patch-based CNN approach is often employed because of the large size of WSIs; however, segmentation performance is sensitive to the field-of-view and resolution of the input patches, and balancing the trade-offs is challenging when there are drastic size variations in the segmented structures. We propose a multiresolution semantic segmentation approach, which is capable of addressing the threefold trade-off between field-of-view, computational efficiency, and spatial resolution in histopathology WSIs.

Approach: We propose a two-stage multiresolution approach for semantic segmentation of histopathology WSIs of mouse lung tissue and human placenta. In the first stage, we use four different CNNs to extract the contextual information from input patches at four different resolutions. In the second stage, we use another CNN to aggregate the extracted information in the first stage and generate the final segmentation masks.

Results: The proposed method reported 95.6%, 92.5%, and 97.1% in our single-class placenta dataset and 97.1%, 87.3%, and 83.3% in our multiclass lung dataset for pixel-wise accuracy, mean Dice similarity coefficient, and mean positive predictive value, respectively.

Conclusions: The proposed multiresolution approach demonstrated high accuracy and consistency in the semantic segmentation of biological structures of different sizes in our single-class placenta and multiclass lung histopathology WSI datasets. Our study can potentially be used in automated analysis of biological structures, facilitating the clinical research in histopathology applications.

数字组织病理学中生物结构的多分辨率语义分割。
目的:高分辨率组织病理学全切片图像(WSI)的语义分割是各种病理学应用中的一项重要基本任务。卷积神经网络(CNN)是最先进的图像分割方法。然而,分割性能对输入斑块的视场和分辨率非常敏感,而且当分割结构的尺寸变化很大时,平衡取舍是一项挑战。我们提出了一种多分辨率语义分割方法,它能够解决组织病理学 WSI 中视场、计算效率和空间分辨率之间的三重权衡问题:我们提出了一种两阶段多分辨率方法,用于对小鼠肺组织和人类胎盘的组织病理学 WSI 进行语义分割。在第一阶段,我们使用四个不同的 CNN 从四个不同分辨率的输入斑块中提取上下文信息。在第二阶段,我们使用另一个 CNN 聚合第一阶段提取的信息,并生成最终的分割掩膜:结果:在单类胎盘数据集中,所提出的方法的像素准确率、平均 Dice 相似性系数和平均正预测值分别为 95.6%、92.5% 和 97.1%;在多类肺部数据集中,所提出的方法的像素准确率、平均 Dice 相似性系数和平均正预测值分别为 97.1%、87.3% 和 83.3%:在单类胎盘和多类肺组织病理学 WSI 数据集中,所提出的多分辨率方法在对不同大小的生物结构进行语义分割时表现出了很高的准确性和一致性。我们的研究可用于生物结构的自动分析,促进组织病理学应用的临床研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信