James Manifield, Charikleia Alexiou, Dimitrios Megaritis, Katherine Baker, Nicola Adams, Gill Barry, Ioannis Vogiatzis
{"title":"Effects of inspiratory muscle training on thoracoabdominal volume regulation in older adults: A randomised controlled trial","authors":"James Manifield, Charikleia Alexiou, Dimitrios Megaritis, Katherine Baker, Nicola Adams, Gill Barry, Ioannis Vogiatzis","doi":"10.1016/j.resp.2024.104278","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>We investigated the effect of inspiratory muscle training (IMT) on inspiratory muscle strength, functional capacity and respiratory muscle kinematics during exercise in healthy older adults.</p></div><div><h3>Methods</h3><p>24 adults were randomised into an IMT or SHAM-IMT group. Both groups performed 30 breaths, twice daily, for 8 weeks, at intensities of ∼50 % maximal inspiratory pressure (PImax; IMT) or <15 % PImax (SHAM-IMT). Measurements of PImax, breathing discomfort during a bout of IMT, six-minute walk distance, physical activity levels, and balance were assessed pre- and post-intervention. Respiratory muscle kinematics were assessed via optoelectronic plethysmography (OEP) during constant work rate cycling.</p></div><div><h3>Results</h3><p>PImax was significantly improved (by 20.0±11.9 cmH<sub>2</sub>O; p=0.001) in the IMT group only. Breathing discomfort ratings during IMT significantly decreased (from 3.5±0.9–1.7±0.8). Daily sedentary time was decreased (by 28.0±39.8 min; p=0.042), and reactive balance significantly improved (by 1.2±0.8; p<0.001) in the IMT group only. OEP measures showed a significantly greater contribution of the pulmonary and abdominal rib cage compartments to total tidal volume expansion post-IMT.</p></div><div><h3>Conclusions</h3><p>IMT significantly improves inspiratory muscle strength and breathing discomfort in this population. IMT induces greater rib cage expansion and diaphragm descent during exercise, thereby suggesting a less restrictive effect on thoracic expansion and increased diaphragmatic power generation.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569904824000715/pdfft?md5=e1bf624e7ec93f6c825ab636f60e72a4&pid=1-s2.0-S1569904824000715-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904824000715","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
We investigated the effect of inspiratory muscle training (IMT) on inspiratory muscle strength, functional capacity and respiratory muscle kinematics during exercise in healthy older adults.
Methods
24 adults were randomised into an IMT or SHAM-IMT group. Both groups performed 30 breaths, twice daily, for 8 weeks, at intensities of ∼50 % maximal inspiratory pressure (PImax; IMT) or <15 % PImax (SHAM-IMT). Measurements of PImax, breathing discomfort during a bout of IMT, six-minute walk distance, physical activity levels, and balance were assessed pre- and post-intervention. Respiratory muscle kinematics were assessed via optoelectronic plethysmography (OEP) during constant work rate cycling.
Results
PImax was significantly improved (by 20.0±11.9 cmH2O; p=0.001) in the IMT group only. Breathing discomfort ratings during IMT significantly decreased (from 3.5±0.9–1.7±0.8). Daily sedentary time was decreased (by 28.0±39.8 min; p=0.042), and reactive balance significantly improved (by 1.2±0.8; p<0.001) in the IMT group only. OEP measures showed a significantly greater contribution of the pulmonary and abdominal rib cage compartments to total tidal volume expansion post-IMT.
Conclusions
IMT significantly improves inspiratory muscle strength and breathing discomfort in this population. IMT induces greater rib cage expansion and diaphragm descent during exercise, thereby suggesting a less restrictive effect on thoracic expansion and increased diaphragmatic power generation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.