Travelling waves for a fast reaction limit of a discrete coagulation-fragmentation model with diffusion and proliferation.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Maxime Estavoyer, Thomas Lepoutre
{"title":"Travelling waves for a fast reaction limit of a discrete coagulation-fragmentation model with diffusion and proliferation.","authors":"Maxime Estavoyer, Thomas Lepoutre","doi":"10.1007/s00285-024-02099-4","DOIUrl":null,"url":null,"abstract":"<p><p>We study traveling wave solutions for a reaction-diffusion model, introduced in the article Calvez et al. (Regime switching on the propagation speed of travelling waves of some size-structured myxobacteriapopulation models, 2023), describing the spread of the social bacterium Myxococcus xanthus. This model describes the spatial dynamics of two different cluster sizes: isolated bacteria and paired bacteria. Two isolated bacteria can coagulate to form a cluster of two bacteria and conversely, a pair of bacteria can fragment into two isolated bacteria. Coagulation and fragmentation are assumed to occur at a certain rate denoted by k. In this article we study theoretically the limit of fast coagulation fragmentation corresponding mathematically to the limit when the value of the parameter k tends to <math><mrow><mo>+</mo> <mi>∞</mi></mrow> </math> . For this regime, we demonstrate the existence and uniqueness of a transition between pulled and pushed fronts for a certain critical ratio <math><msup><mi>θ</mi> <mo>⋆</mo></msup> </math> between the diffusion coefficient of isolated bacteria and the diffusion coefficient of paired bacteria. When the ratio is below <math><msup><mi>θ</mi> <mo>⋆</mo></msup> </math> , the critical front speed is constant and corresponds to the linear speed. Conversely, when the ratio is above the critical threshold, the critical spreading speed becomes strictly greater than the linear speed.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02099-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We study traveling wave solutions for a reaction-diffusion model, introduced in the article Calvez et al. (Regime switching on the propagation speed of travelling waves of some size-structured myxobacteriapopulation models, 2023), describing the spread of the social bacterium Myxococcus xanthus. This model describes the spatial dynamics of two different cluster sizes: isolated bacteria and paired bacteria. Two isolated bacteria can coagulate to form a cluster of two bacteria and conversely, a pair of bacteria can fragment into two isolated bacteria. Coagulation and fragmentation are assumed to occur at a certain rate denoted by k. In this article we study theoretically the limit of fast coagulation fragmentation corresponding mathematically to the limit when the value of the parameter k tends to + . For this regime, we demonstrate the existence and uniqueness of a transition between pulled and pushed fronts for a certain critical ratio θ between the diffusion coefficient of isolated bacteria and the diffusion coefficient of paired bacteria. When the ratio is below θ , the critical front speed is constant and corresponds to the linear speed. Conversely, when the ratio is above the critical threshold, the critical spreading speed becomes strictly greater than the linear speed.

Abstract Image

带有扩散和增殖的离散凝固-破碎模型快速反应极限的游波。
我们研究了一个反应-扩散模型的行波解,该模型在 Calvez 等人的文章(《一些规模结构化的黄曲霉菌种群模型的行波传播速度的制度转换》,2023 年)中介绍过,描述了社会性黄曲霉菌的传播。该模型描述了两种不同规模菌群的空间动态:孤立细菌和成对细菌。两个孤立的细菌可以凝结成一个由两个细菌组成的菌群,反之,一对细菌可以分裂成两个孤立的细菌。在本文中,我们从理论上研究了快速凝结破碎的极限,该极限在数学上与参数 k 值趋于 + ∞ 时的极限相对应。对于这一机制,我们证明了当孤立细菌的扩散系数与成对细菌的扩散系数之间的临界比率θ ⋆达到一定程度时,拉式前沿与推式前沿之间过渡的存在性和唯一性。当该比值低于 θ ⋆时,临界前沿速度恒定,与线速度一致。相反,当比率高于临界阈值时,临界扩散速度严格大于线性速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信