Cactus: A user-friendly and reproducible ATAC-Seq and mRNA-Seq analysis pipeline for data preprocessing, differential analysis, and enrichment analysis
IF 4.3 3区 材料科学Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jérôme Salignon , Lluís Millan-Ariño , Maxime U. Garcia , Christian G. Riedel
{"title":"Cactus: A user-friendly and reproducible ATAC-Seq and mRNA-Seq analysis pipeline for data preprocessing, differential analysis, and enrichment analysis","authors":"Jérôme Salignon , Lluís Millan-Ariño , Maxime U. Garcia , Christian G. Riedel","doi":"10.1016/j.ygeno.2024.110858","DOIUrl":null,"url":null,"abstract":"<div><p>The ever decreasing cost of Next-Generation Sequencing coupled with the emergence of efficient and reproducible analysis pipelines has rendered genomic methods more accessible. However, downstream analyses are basic or missing in most workflows, creating a significant barrier for non-bioinformaticians. To help close this gap, we developed Cactus, an end-to-end pipeline for analyzing ATAC-Seq and mRNA-Seq data, either separately or jointly. Its Nextflow-, container-, and virtual environment-based architecture ensures efficient and reproducible analyses. Cactus preprocesses raw reads, conducts differential analyses between conditions, and performs enrichment analyses in various databases, including DNA-binding motifs, ChIP-Seq binding sites, chromatin states, and ontologies. We demonstrate the utility of Cactus in a multi-modal and multi-species case study as well as by showcasing its unique capabilities as compared to other ATAC-Seq pipelines. In conclusion, Cactus can assist researchers in gaining comprehensive insights from chromatin accessibility and gene expression data in a quick, user-friendly, and reproducible manner.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S088875432400079X/pdfft?md5=5940e619de02ee861593f3fd7f961e88&pid=1-s2.0-S088875432400079X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088875432400079X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The ever decreasing cost of Next-Generation Sequencing coupled with the emergence of efficient and reproducible analysis pipelines has rendered genomic methods more accessible. However, downstream analyses are basic or missing in most workflows, creating a significant barrier for non-bioinformaticians. To help close this gap, we developed Cactus, an end-to-end pipeline for analyzing ATAC-Seq and mRNA-Seq data, either separately or jointly. Its Nextflow-, container-, and virtual environment-based architecture ensures efficient and reproducible analyses. Cactus preprocesses raw reads, conducts differential analyses between conditions, and performs enrichment analyses in various databases, including DNA-binding motifs, ChIP-Seq binding sites, chromatin states, and ontologies. We demonstrate the utility of Cactus in a multi-modal and multi-species case study as well as by showcasing its unique capabilities as compared to other ATAC-Seq pipelines. In conclusion, Cactus can assist researchers in gaining comprehensive insights from chromatin accessibility and gene expression data in a quick, user-friendly, and reproducible manner.