Different behavior of two strains of the arbuscular mycorrhizal fungus Rhizophagus intraradices on Senecio bonariensis Hook. & Arn. against heavy metal soil pollution: a pilot-scale test.
IF 4.3 3区 材料科学Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Roxana P Colombo, Vanesa A Silvani, Matias E Benavidez, Adalgisa Scotti, Alicia M Godeas
{"title":"Different behavior of two strains of the arbuscular mycorrhizal fungus <i>Rhizophagus intraradices</i> on <i>Senecio bonariensis</i> Hook. & Arn. against heavy metal soil pollution: a pilot-scale test.","authors":"Roxana P Colombo, Vanesa A Silvani, Matias E Benavidez, Adalgisa Scotti, Alicia M Godeas","doi":"10.1080/15226514.2024.2353389","DOIUrl":null,"url":null,"abstract":"<p><p>Arbuscular mycorrhizal fungi (AMF) have different biological mechanisms to alleviate stressful conditions in heavy metals (HMs) polluted soil. These mechanisms were widely assessed under controlled/greenhouse conditions, but scarcely studied at pilot or territory scale. The aim of this study was to evaluate the response of two <i>Rhizophagus intraradices</i> strains isolated from soils with different histories of pollution, in association with <i>Senecio bonariensis</i> plants, growing in an engineering vegetal depuration module filled with artificially HMs polluted substrate. Plants inoculated with GC3 strain uptook low amounts of HMs and translocated them to shoot biomass. Heavy metals (Mg, Zn, Mn, Cr, Cu and Ni) and macronutrients (Ca, K, S and P) were accumulated in roots of <i>S. bonariensis</i> when inoculated with GB8 strain, limiting their translocation to the shoot. Uninoculated plants showed high translocation of all studied elements to shoot tissues. Concluding, tested <i>R. intraradices</i> strains have exhibited different phytoprotection mechanisms under extremely toxic concentrations of HMs. Moreover, the development of the assay at such a high Technological Readiness Level represents a novel contribution in this field of study.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2353389","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Arbuscular mycorrhizal fungi (AMF) have different biological mechanisms to alleviate stressful conditions in heavy metals (HMs) polluted soil. These mechanisms were widely assessed under controlled/greenhouse conditions, but scarcely studied at pilot or territory scale. The aim of this study was to evaluate the response of two Rhizophagus intraradices strains isolated from soils with different histories of pollution, in association with Senecio bonariensis plants, growing in an engineering vegetal depuration module filled with artificially HMs polluted substrate. Plants inoculated with GC3 strain uptook low amounts of HMs and translocated them to shoot biomass. Heavy metals (Mg, Zn, Mn, Cr, Cu and Ni) and macronutrients (Ca, K, S and P) were accumulated in roots of S. bonariensis when inoculated with GB8 strain, limiting their translocation to the shoot. Uninoculated plants showed high translocation of all studied elements to shoot tissues. Concluding, tested R. intraradices strains have exhibited different phytoprotection mechanisms under extremely toxic concentrations of HMs. Moreover, the development of the assay at such a high Technological Readiness Level represents a novel contribution in this field of study.