Melatonin ameliorates 10-hydroxycamptothecin-induced oxidative stress and apoptosis via autophagy-regulated p62/Keap1/Nrf2 pathway in mouse testicular cells

IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Jinmei Cheng, Junjie Xu, Yimin Gu, Yueming Wang, Jianyu Wang, Fei Sun
{"title":"Melatonin ameliorates 10-hydroxycamptothecin-induced oxidative stress and apoptosis via autophagy-regulated p62/Keap1/Nrf2 pathway in mouse testicular cells","authors":"Jinmei Cheng,&nbsp;Junjie Xu,&nbsp;Yimin Gu,&nbsp;Yueming Wang,&nbsp;Jianyu Wang,&nbsp;Fei Sun","doi":"10.1111/jpi.12959","DOIUrl":null,"url":null,"abstract":"<p>10-Hydroxycamptothecin (HCPT) is a widely used clinical anticancer drug but has a significant side effect profile. Melatonin has a beneficial impact on the chemotherapy of different cancer cells and reproductive processes, but the effect and underlying molecular mechanism of melatonin's involvement in the HCPT-induced side effects in cells, especially in the testicular cells, are poorly understood. In this study, we found that melatonin therapy significantly restored HCPT-induced testicular cell damage and did not affect the antitumor effect of HCPT. Further analysis found that melatonin therapy suppressed HCPT-induced DNA damage associated with ataxia-telangiectasia mutated- and Rad3-related and CHK1 phosphorylation levels in the testis. Changes in apoptosis-associated protein levels (Bax, Bcl-2, p53, and Cleaved caspase-3) and in reactive oxygen species-associated proteins (Nrf2 and Keap1) and index (malondialdehyde and glutathione) suggested that melatonin treatment relieved HCPT-induced cell apoptosis and oxidative damage, respectively. Mechanistically, melatonin-activated autophagy proteins (ATG7, Beclin1, and LC3bII/I) may induce p62-dependent autophagy to degrade Keap1, eliciting Nrf2 from Keap1-Nrf2 interaction to promote antioxidant enzyme expression such as HO-1, which would salvage HCPT-induced ROS production and mitochondrial dysfunction. Collectively, this study reveals that melatonin therapy may protect testicular cells from HCPT-induced damage via the activation of autophagy, which alleviates oxidative stress, mitochondrial dysfunction, and cell apoptosis.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"76 4","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pineal Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpi.12959","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

10-Hydroxycamptothecin (HCPT) is a widely used clinical anticancer drug but has a significant side effect profile. Melatonin has a beneficial impact on the chemotherapy of different cancer cells and reproductive processes, but the effect and underlying molecular mechanism of melatonin's involvement in the HCPT-induced side effects in cells, especially in the testicular cells, are poorly understood. In this study, we found that melatonin therapy significantly restored HCPT-induced testicular cell damage and did not affect the antitumor effect of HCPT. Further analysis found that melatonin therapy suppressed HCPT-induced DNA damage associated with ataxia-telangiectasia mutated- and Rad3-related and CHK1 phosphorylation levels in the testis. Changes in apoptosis-associated protein levels (Bax, Bcl-2, p53, and Cleaved caspase-3) and in reactive oxygen species-associated proteins (Nrf2 and Keap1) and index (malondialdehyde and glutathione) suggested that melatonin treatment relieved HCPT-induced cell apoptosis and oxidative damage, respectively. Mechanistically, melatonin-activated autophagy proteins (ATG7, Beclin1, and LC3bII/I) may induce p62-dependent autophagy to degrade Keap1, eliciting Nrf2 from Keap1-Nrf2 interaction to promote antioxidant enzyme expression such as HO-1, which would salvage HCPT-induced ROS production and mitochondrial dysfunction. Collectively, this study reveals that melatonin therapy may protect testicular cells from HCPT-induced damage via the activation of autophagy, which alleviates oxidative stress, mitochondrial dysfunction, and cell apoptosis.

褪黑素通过自噬调节的p62/Keap1/Nrf2途径改善小鼠睾丸细胞中10-羟基喜树碱诱导的氧化应激和细胞凋亡。
10-羟基喜树碱(HCPT)是一种广泛应用于临床的抗癌药物,但具有明显的副作用。褪黑素对不同癌细胞的化疗和生殖过程都有益处,但褪黑素参与 HCPT 诱导的细胞副作用,尤其是睾丸细胞副作用的影响和潜在分子机制却鲜为人知。在这项研究中,我们发现褪黑素疗法能明显恢复 HCPT 诱导的睾丸细胞损伤,并且不影响 HCPT 的抗肿瘤效果。进一步的分析发现,褪黑激素疗法抑制了 HCPT 诱导的 DNA 损伤,与共济失调-特朗吉特氏症突变相关,并抑制了睾丸中 Rad3 相关和 CHK1 磷酸化水平。细胞凋亡相关蛋白水平(Bax、Bcl-2、p53和裂解的caspase-3)以及活性氧相关蛋白(Nrf2和Keap1)和指标(丙二醛和谷胱甘肽)的变化表明,褪黑素治疗分别缓解了HCPT诱导的细胞凋亡和氧化损伤。从机理上讲,褪黑素激活的自噬蛋白(ATG7、Beclin1和LC3bII/I)可能诱导p62依赖性自噬降解Keap1,从Keap1-Nrf2相互作用中激发Nrf2促进HO-1等抗氧化酶的表达,从而挽救HCPT诱导的ROS产生和线粒体功能障碍。总之,本研究揭示了褪黑素疗法可通过激活自噬保护睾丸细胞免受HCPT诱导的损伤,从而缓解氧化应激、线粒体功能障碍和细胞凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Pineal Research
Journal of Pineal Research 医学-内分泌学与代谢
CiteScore
17.70
自引率
4.90%
发文量
66
审稿时长
1 months
期刊介绍: The Journal of Pineal Research welcomes original scientific research on the pineal gland and melatonin in vertebrates, as well as the biological functions of melatonin in non-vertebrates, plants, and microorganisms. Criteria for publication include scientific importance, novelty, timeliness, and clarity of presentation. The journal considers experimental data that challenge current thinking and welcomes case reports contributing to understanding the pineal gland and melatonin research. Its aim is to serve researchers in all disciplines related to the pineal gland and melatonin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信