Sangmin Lee, Jeongbok Lee, Soomi Choi, Eunhyung Kim, Hyunseok Kwon, Jinkyu Lee, Sung Min Kim, Heungsoo Shin
{"title":"Biofabrication of 3D adipose tissue via assembly of composite stem cell spheroids containing adipo-inductive dual-signal delivery nanofibers.","authors":"Sangmin Lee, Jeongbok Lee, Soomi Choi, Eunhyung Kim, Hyunseok Kwon, Jinkyu Lee, Sung Min Kim, Heungsoo Shin","doi":"10.1088/1758-5090/ad4a67","DOIUrl":null,"url":null,"abstract":"<p><p>Reconstruction of large 3D tissues based on assembly of micro-sized multi-cellular spheroids has gained attention in tissue engineering. However, formation of 3D adipose tissue from spheroids has been challenging due to the limited adhesion capability and restricted cell mobility of adipocytes in culture media. In this study, we addressed this problem by developing adipo-inductive nanofibers enabling dual delivery of indomethacin and insulin. These nanofibers were introduced into composite spheroids comprising human adipose-derived stem cells (hADSCs). This approach led to a significant enhancement in the formation of uniform lipid droplets, as evidenced by the significantly increased Oil red O-stained area in spheroids incorporating indomethacin and insulin dual delivery nanofibers (56.9 ± 4.6%) compared to the control (15.6 ± 3.5%) with significantly greater gene expression associated with adipogenesis (<i>C/EBPA, PPARG, FABP4</i>, and adiponectin) of hADSCs. Furthermore, we investigated the influence of culture media on the migration and merging of spheroids and observed significant decrease in migration and merging of spheroids in adipogenic differentiation media. Conversely, the presence of adipo-inductive nanofibers promoted spheroid fusion, allowing the formation of macroscopic 3D adipose tissue in the absence of adipogenic supplements while facilitating homogeneous adipogenesis of hADSCs. The approach described here holds promise for the generation of 3D adipose tissue constructs by scaffold-free assembly of stem cell spheroids with potential applications in clinical and organ models.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad4a67","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reconstruction of large 3D tissues based on assembly of micro-sized multi-cellular spheroids has gained attention in tissue engineering. However, formation of 3D adipose tissue from spheroids has been challenging due to the limited adhesion capability and restricted cell mobility of adipocytes in culture media. In this study, we addressed this problem by developing adipo-inductive nanofibers enabling dual delivery of indomethacin and insulin. These nanofibers were introduced into composite spheroids comprising human adipose-derived stem cells (hADSCs). This approach led to a significant enhancement in the formation of uniform lipid droplets, as evidenced by the significantly increased Oil red O-stained area in spheroids incorporating indomethacin and insulin dual delivery nanofibers (56.9 ± 4.6%) compared to the control (15.6 ± 3.5%) with significantly greater gene expression associated with adipogenesis (C/EBPA, PPARG, FABP4, and adiponectin) of hADSCs. Furthermore, we investigated the influence of culture media on the migration and merging of spheroids and observed significant decrease in migration and merging of spheroids in adipogenic differentiation media. Conversely, the presence of adipo-inductive nanofibers promoted spheroid fusion, allowing the formation of macroscopic 3D adipose tissue in the absence of adipogenic supplements while facilitating homogeneous adipogenesis of hADSCs. The approach described here holds promise for the generation of 3D adipose tissue constructs by scaffold-free assembly of stem cell spheroids with potential applications in clinical and organ models.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).