How do phytophagous insects affect phyllosphere fungi? Tracking fungi from milkweed to monarch caterpillar frass reveals communities dominated by fungal yeast
{"title":"How do phytophagous insects affect phyllosphere fungi? Tracking fungi from milkweed to monarch caterpillar frass reveals communities dominated by fungal yeast","authors":"Ryoko Oono, Vanessa Chou, Mari Irving","doi":"10.1111/1758-2229.13213","DOIUrl":null,"url":null,"abstract":"<p>Since a significant proportion of plant matter is consumed by herbivores, a necessary adaptation for many phyllosphere microbes could be to survive through the guts of herbivores. While many studies explore the gut microbiome of herbivores by surveying the microbiome in their frass, few studies compare the phyllosphere microbiome to the gut microbiome of herbivores. High-throughput metabarcode sequencing was used to track the fungal community from milkweed (<i>Asclepias</i> spp.) leaves to monarch caterpillar frass. The most commonly identified fungal taxa that dominated the caterpillar frass after the consumption of leaves were yeasts, mostly belonging to the Basidiomycota phylum. While most fungal communities underwent significant bottlenecks and some yeast taxa increased in relative abundance, a consistent directional change in community structure was not identified from leaf to caterpillar frass. These results suggest that some phyllosphere fungi, especially diverse yeasts, can survive herbivory, but whether herbivory is a key stage of their life cycle remains uncertain. For exploring phyllosphere fungi and the potential coprophilous lifestyles of endophytic and epiphytic fungi, methods that target yeast and Basidiomycota fungi are recommended.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.13213","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13213","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Since a significant proportion of plant matter is consumed by herbivores, a necessary adaptation for many phyllosphere microbes could be to survive through the guts of herbivores. While many studies explore the gut microbiome of herbivores by surveying the microbiome in their frass, few studies compare the phyllosphere microbiome to the gut microbiome of herbivores. High-throughput metabarcode sequencing was used to track the fungal community from milkweed (Asclepias spp.) leaves to monarch caterpillar frass. The most commonly identified fungal taxa that dominated the caterpillar frass after the consumption of leaves were yeasts, mostly belonging to the Basidiomycota phylum. While most fungal communities underwent significant bottlenecks and some yeast taxa increased in relative abundance, a consistent directional change in community structure was not identified from leaf to caterpillar frass. These results suggest that some phyllosphere fungi, especially diverse yeasts, can survive herbivory, but whether herbivory is a key stage of their life cycle remains uncertain. For exploring phyllosphere fungi and the potential coprophilous lifestyles of endophytic and epiphytic fungi, methods that target yeast and Basidiomycota fungi are recommended.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.