Reproducible Radiomics Features from Multi-MRI-Scanner Test–Retest-Study: Influence on Performance and Generalizability of Models

IF 3.3 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Markus Wennmann MD, Lukas T. Rotkopf MD, BSc, Fabian Bauer MD, Thomas Hielscher MSc, Jessica Kächele MSc, Elias K. Mai MD, Niels Weinhold PhD, Marc-Steffen Raab MD, Hartmut Goldschmidt MD, Tim F. Weber MD, Heinz-Peter Schlemmer MD, Stefan Delorme MD, Klaus Maier-Hein PhD, Peter Neher PhD
{"title":"Reproducible Radiomics Features from Multi-MRI-Scanner Test–Retest-Study: Influence on Performance and Generalizability of Models","authors":"Markus Wennmann MD,&nbsp;Lukas T. Rotkopf MD, BSc,&nbsp;Fabian Bauer MD,&nbsp;Thomas Hielscher MSc,&nbsp;Jessica Kächele MSc,&nbsp;Elias K. Mai MD,&nbsp;Niels Weinhold PhD,&nbsp;Marc-Steffen Raab MD,&nbsp;Hartmut Goldschmidt MD,&nbsp;Tim F. Weber MD,&nbsp;Heinz-Peter Schlemmer MD,&nbsp;Stefan Delorme MD,&nbsp;Klaus Maier-Hein PhD,&nbsp;Peter Neher PhD","doi":"10.1002/jmri.29442","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <h3> Background</h3>\n \n <p>Radiomics models trained on data from one center typically show a decline of performance when applied to data from external centers, hindering their introduction into large-scale clinical practice. Current expert recommendations suggest to use only reproducible radiomics features isolated by multiscanner test–retest experiments, which might help to overcome the problem of limited generalizability to external data.</p>\n </section>\n \n <section>\n \n <h3> Purpose</h3>\n \n <p>To evaluate the influence of using only a subset of robust radiomics features, defined in a prior in vivo multi-MRI-scanner test–retest-study, on the performance and generalizability of radiomics models.</p>\n </section>\n \n <section>\n \n <h3> Study Type</h3>\n \n <p>Retrospective.</p>\n </section>\n \n <section>\n \n <h3> Population</h3>\n \n <p>Patients with monoclonal plasma cell disorders. Training set (117 MRIs from center 1); internal test set (42 MRIs from center 1); external test set (143 MRIs from center 2–8).</p>\n </section>\n \n <section>\n \n <h3> Field Strength/Sequence</h3>\n \n <p>1.5T and 3.0T; T1-weighted turbo spin echo.</p>\n </section>\n \n <section>\n \n <h3> Assessment</h3>\n \n <p>The task for the radiomics models was to predict plasma cell infiltration, determined by bone marrow biopsy, noninvasively from MRI. Radiomics machine learning models, including linear regressor, support vector regressor (SVR), and random forest regressor (RFR), were trained on data from center 1, using either all radiomics features, or using only reproducible radiomics features. Models were tested on an internal (center 1) and a multicentric external data set (center 2–8).</p>\n </section>\n \n <section>\n \n <h3> Statistical Tests</h3>\n \n <p>Pearson correlation coefficient <i>r</i> and mean absolute error (MAE) between predicted and actual plasma cell infiltration. Fisher's z-transformation, Wilcoxon signed-rank test, Wilcoxon rank-sum test; significance level <i>P</i> &lt; 0.05.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>When using only reproducible features compared with all features, the performance of the SVR on the external test set significantly improved (<i>r</i> = 0.43 vs. <i>r</i> = 0.18 and MAE = 22.6 vs. MAE = 28.2). For the RFR, the performance on the external test set deteriorated when using only reproducible instead of all radiomics features (<i>r</i> = 0.33 vs. <i>r</i> = 0.44, <i>P</i> = 0.29 and MAE = 21.9 vs. MAE = 20.5, <i>P</i> = 0.10).</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Using only reproducible radiomics features improves the external performance of some, but not all machine learning models, and did not automatically lead to an improvement of the external performance of the overall best radiomics model.</p>\n </section>\n \n <section>\n \n <h3> Level of Evidence</h3>\n \n <p>3.</p>\n </section>\n \n <section>\n \n <h3> Technical Efficacy</h3>\n \n <p>Stage 2.</p>\n </section>\n </div>","PeriodicalId":16140,"journal":{"name":"Journal of Magnetic Resonance Imaging","volume":"61 2","pages":"676-686"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706307/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Imaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmri.29442","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Radiomics models trained on data from one center typically show a decline of performance when applied to data from external centers, hindering their introduction into large-scale clinical practice. Current expert recommendations suggest to use only reproducible radiomics features isolated by multiscanner test–retest experiments, which might help to overcome the problem of limited generalizability to external data.

Purpose

To evaluate the influence of using only a subset of robust radiomics features, defined in a prior in vivo multi-MRI-scanner test–retest-study, on the performance and generalizability of radiomics models.

Study Type

Retrospective.

Population

Patients with monoclonal plasma cell disorders. Training set (117 MRIs from center 1); internal test set (42 MRIs from center 1); external test set (143 MRIs from center 2–8).

Field Strength/Sequence

1.5T and 3.0T; T1-weighted turbo spin echo.

Assessment

The task for the radiomics models was to predict plasma cell infiltration, determined by bone marrow biopsy, noninvasively from MRI. Radiomics machine learning models, including linear regressor, support vector regressor (SVR), and random forest regressor (RFR), were trained on data from center 1, using either all radiomics features, or using only reproducible radiomics features. Models were tested on an internal (center 1) and a multicentric external data set (center 2–8).

Statistical Tests

Pearson correlation coefficient r and mean absolute error (MAE) between predicted and actual plasma cell infiltration. Fisher's z-transformation, Wilcoxon signed-rank test, Wilcoxon rank-sum test; significance level P < 0.05.

Results

When using only reproducible features compared with all features, the performance of the SVR on the external test set significantly improved (r = 0.43 vs. r = 0.18 and MAE = 22.6 vs. MAE = 28.2). For the RFR, the performance on the external test set deteriorated when using only reproducible instead of all radiomics features (r = 0.33 vs. r = 0.44, P = 0.29 and MAE = 21.9 vs. MAE = 20.5, P = 0.10).

Conclusion

Using only reproducible radiomics features improves the external performance of some, but not all machine learning models, and did not automatically lead to an improvement of the external performance of the overall best radiomics model.

Level of Evidence

3.

Technical Efficacy

Stage 2.

Abstract Image

多核磁共振成像扫描仪测试-重测-研究的可重复放射组学特征:对模型性能和可推广性的影响。
背景:根据一个中心的数据训练的放射组学模型在应用于外部中心的数据时通常会表现出性能下降,这阻碍了其在大规模临床实践中的应用。目前的专家建议只使用通过多扫描仪测试-复测实验分离出来的可重复的放射组学特征,这可能有助于克服外部数据通用性有限的问题。目的:评估只使用先前体内多核磁共振扫描仪测试-复测研究中定义的稳健放射组学特征子集对放射组学模型的性能和通用性的影响:研究对象人群:单克隆浆细胞疾病患者。训练集(来自中心1的117个核磁共振成像);内部测试集(来自中心1的42个核磁共振成像);外部测试集(来自中心2-8的143个核磁共振成像):场强/序列:1.5T 和 3.0T;T1 加权涡轮自旋回波:放射组学模型的任务是通过磁共振成像无创预测骨髓活检确定的浆细胞浸润。放射组学机器学习模型包括线性回归器、支持向量回归器(SVR)和随机森林回归器(RFR),这些模型在中心1的数据上进行了训练,训练时要么使用所有放射组学特征,要么只使用可重复的放射组学特征。模型在内部数据集(中心 1)和多中心外部数据集(中心 2-8)上进行了测试:预测和实际浆细胞浸润之间的皮尔逊相关系数 r 和平均绝对误差 (MAE)。费雪z变换、Wilcoxon符号秩检验、Wilcoxon秩和检验;显著性水平P 结果:与所有特征相比,只使用可重复特征时,SVR 在外部测试集上的性能明显提高(r = 0.43 vs. r = 0.18,MAE = 22.6 vs. MAE = 28.2)。就 RFR 而言,当只使用可重复的放射组学特征而不是所有放射组学特征时,外部测试集上的性能有所下降(r = 0.33 vs. r = 0.44,P = 0.29;MAE = 21.9 vs. MAE = 20.5,P = 0.10):结论:仅使用可重现的放射组学特征能提高某些机器学习模型的外部性能,但不能提高所有机器学习模型的外部性能,也不能自动提高整体最佳放射组学模型的外部性能:3:技术功效:证据等级:3:技术功效:第 2 阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.70
自引率
6.80%
发文量
494
审稿时长
2 months
期刊介绍: The Journal of Magnetic Resonance Imaging (JMRI) is an international journal devoted to the timely publication of basic and clinical research, educational and review articles, and other information related to the diagnostic applications of magnetic resonance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信